A Tiny Crypto Library;,
LibTomCrypt
Version 0.94

Tom St Denis

tomstdenis@iahu.ca
http://libtomerypt.org

Phone: 1-613-836-3160
111 Banning Rd
Kanata, Ontario

K2L 1C3
Canada

February 20, 2004

This text and source code library are both hereby placed in the public do-
main. This book has been formatted for B5 [176x250] paper using the KTEX
book macro package.

Open Source. Open Academia. Open Minds.

Tom St Denis,
Ontario, Canada

Contents

I Introduction

IL1__What is the LibTomCrvptd

[L1.1 WhatthelibrarvISford

4 CONTENTS

343 Tmplementatiod 26

B.5 Encrypt and Authenticate Moded 29
B5l FAX Modd 29

B52 OCBModd 31
4__One-Way Cryptographic Hash Functiond 35
b1 CoreFunctiond 35
M2 Hash Descriptord, 36
B21 Noticd . .. oo 40
[5_Message Authentication Coded 41
b1 HMAC Protocol 41
h.2 OMAC Supportl 44
3 PMAC Supporl 47
[6__Psendo-Random Number Generators 49
b1 CoreFunctiond 49
Bl Remand. 50

612 FExampld. 50

6.2 PRNG Descriptord 51
6.3 The Secure RNA 52
(6.3.1 The Secure PRNG Interfacd 54
[z_RSA Routined 57
L1 Backeground 57
E2 CoreFunctiond 58
L3 Packet Routimed 59
F4 Remarkd 60

B Diffie-Hellman Key Exchangd 63
R1 Backeground, 63
R2 CoreFunctiond 64
R21 Remarkson Usagd 65

R2.2 Remarks on The Snippetl 68
R.3__Other Diffie-Hellman Functiond 68

CONTENTS

13.2.1 Binary Forms of “mp int” Variabled

[13.2.2 Primality Testing

71
71
72
73
73

75
(0]
(0]
76
(s
78

79
79
80

85

CONTENTS

Chapter 1

Introduction

1.1 What is the LibTomCrypt?

LibTomCrypt is a portable ANSI C cryptographic library that supports sym-
metric ciphers, one-way hashes, pseudo-random number generators, public key
cryptography (via RSA DH or ECC/DH) and a plethora of support routines. It
is designed to compile out of the box with the GNU C Compiler (GCC) version
2.95.3 (and higher) and with MSVC version 6 in win32.

The library has been successfully tested on quite a few other platforms rang-
ing from the ARM7TDMI in a Gameboy Advanced to various PowerPC pro-
cessors and even the MIPS processor in the PlayStation 2. Suffice it to say the
code is portable.

The library is designed so new ciphers/hashes/PRNGs can be added at run-
time and the existing API (and helper API functions) will be able to use the
new designs automatically. There exist self-check functions for each cipher and
hash to ensure that they compile and execute to the published design specifi-
cations. The library also performs extensive parameter error checking and will
give verbose error messages when possible.

Essentially the library saves the time of having to implement the ciphers,
hashes, prngs yourself. Typically implementing useful cryptography is an error
prone business which means anything that can save considerable time and effort
is a good thing.

8 CHAPTER 1. INTRODUCTION

1.1.1 What the library IS for?

The library typically serves as a basis for other protocols and message formats.
For example, it should be possible to take the RSA routines out of this library,
apply the appropriate message padding and get PKCS compliant RSA routines.
Similarly SSL protocols could be formed on top of the low-level symmetric cipher
functions. The goal of this package is to provide these low level core functions
in a robust and easy to use fashion.

The library also serves well as a toolkit for applications where they don’t need
to be OpenPGP, PKCS, etc. compliant. Included are fully operational public
key routines for encryption, decryption, signature generation and verification.
These routines are fully portable but are not conformant to any known set of
standards. They are all based on established number theory and cryptography.

1.1.2 What the library IS NOT for?

The library is not designed to be in anyway an implementation of the SSL,
PKCS, P1363 or OpenPGP standards. The library is not designed to be com-
pliant with any known form of API or programming hierarchy. It is not a port
of any other library and it is not platform specific (like the MS CSP). So if
you're looking to drop in some buzzword compliant crypto library this is not
for you. The library has been written from scratch to provide basic functions
as well as non-standard higher level functions.

This is not to say that the library is a “homebrew” project. All of the
symmetric ciphers and one-way hash functions conform to published test vectors.
The public key functions are derived from publicly available material and the
majority of the code has been reviewed by a growing community of developers.

Why not?

You may be asking why I didn’t choose to go all out and support standards
like P1363, PKCS and the whole lot. The reason is quite simple too much
money gets in the way. When I tried to access the P1363 draft documents
and was denied (it requires a password) I realized that they’re just a business
anyways. See what happens is a company will sit down and invent a “standard”.
Then they try to sell it to as many people as they can. All of a sudden this
“standard” is everywhere. Then the standard is updated every so often to keep
people dependent. Then you become RSA. If people are supposed to support
these standards they had better make them more accessible.

1.2. WHY DID I WRITE IT? 9

1.2 Why did I write it?

You may be wondering, “Tom, why did you write a crypto library. I already
have one.”. Well the reason falls into two categories:

1. T am too lazy to figure out someone else’s API. I'd rather invent my own
simpler API and use that.

2. It was (still is) good coding practice.

The idea is that I am not striving to replace OpenSSL or Crypto++ or
Cryptlib or etc. I'm trying to write my own crypto library and hopefully along
the way others will appreciate the work.

With this library all core functions (ciphers, hashes, prngs) have the exact
same prototype definition. They all load and store data in a format independent
of the platform. This means if you encrypt with Blowfish on a PPC it should
decrypt on an x86 with zero problems. The consistent API also means that if you
learn how to use blowfish with my library you know how to use Safer+ or RC6 or
Serpent or ... as well. With all of the core functions there are central descriptor
tables that can be used to make a program automatically pick between ciphers,
hashes and PRNGs at runtime. That means your application can support all
ciphers/hashes/prngs without changing the source code.

1.2.1 Modular

The LibTomCrypt package has also been written to be very modular. The block
ciphers, one-way hashes and pseudo-random number generators (PRNG) are all
used within the API through “descriptor” tables which are essentially struc-
tures with pointers to functions. While you can still call particular functions
directly (e.g. sha256_process()) this descriptor interface allows the developer to
customize their usage of the library.

For example, consider a hardware platform with a specialized RNG device.
Obviously one would like to tap that for the PRNG needs within the library
(e.g. making a RSA key). All the developer has todo is write a descriptor and
the few support routines required for the device. After that the rest of the API
can make use of it without change. Similiarly imagine a few years down the road
when AES2 (or whatever they call it) is invented. It can be added to the library
and used within applications with zero modifications to the end applications
provided they are written properly.

10 CHAPTER 1. INTRODUCTION

This flexibility within the library means it can be used with any combination
of primitive algorithms and unlike libraries like OpenSSL is not tied to direct
routines. For instance, in OpenSSL there are CBC block mode routines for
every single cipher. That means every time you add or remove a cipher from the
library you have to update the associated support code as well. In LibTomCrypt
the associated code (chaining modes in this case) are not directly tied to the
ciphers. That is a new cipher can be added to the library by simply providing
the key setup, ECB decrypt and encrypt and test vector routines. After that
all five chaining mode routines can make use of the cipher right away.

1.3 License

All of the source code except for the following files have been written by the
author or donated to the project under a public domain license:

1. rc2.c

2. safer.c

‘mpi.c” was originally written by Michael Fromberger (sting@linguist.dartmouth.edu)
but has since been replaced with my LibTomMath library.

“rc2.¢” is based on publicly available code that is not attributed to a person
from the given source. “safer.c” was written by Richard De Moliner (demo-
liner@isi.ee.ethz.ch) and is public domain.

The project is hereby released as public domain.

1.4 Patent Disclosure

The author (Tom St Denis) is not a patent lawyer so this section is not to
be treated as legal advice. To the best of the authors knowledge the only
patent related issues within the library are the RC5 and RC6 symmetric block
ciphers. They can be removed from a build by simply commenting out the two
appropriate lines in the makefile script. The rest of the ciphers and hashes are
patent free or under patents that have since expired.

The RC2 and RC4 symmetric ciphers are not under patents but are un-
der trademark regulations. This means you can use the ciphers you just can’t
advertise that you are doing so.

1.5. BUILDING THE LIBRARY 11

1.5 Building the library

To build the library on a GCC equipped platform simply type “make” at your
command prompt. It will build the library file “libtomcrypt.a”.

To install the library copy all of the “.h” files into your “#include” path and
the single libtomecrypt.a file into your library path.

With MSVC you can build the library with “nmake -f makefile.msvc”. This
will produce a “tomcrypt.lib” file which is the core library. Copy the header files
into your MSVC include path and the library in the lib path (typically under
where VC98 is installed).

1.6 Building against the library

In the recent versions the build steps have changed. The build options are now
stored in “mycrypt_custom.h” and no longer in the makefile. If you change a
build option in that file you must re-build the library from clean to ensure the
build is intact. The perl script “config.pl” will help setup the custom header
and a custom makefile if you want one (the provided “makefile” will work with
custom configs).

1.7 Thanks

I would like to give thanks to the following people (in no particular order) for
helping me develop this project:

1. Richard van de Laarschot
2. Richard Heathfield

3. Ajay K. Agrawal

4. Brian Gladman

5. Svante Seleborg

Clay Culver

N

Jason Klapste

8. Dobes Vandermeer

12

10.
11.
12.

13.

Daniel Richards
Wayne Scott
Andrew Tyler
Sky Schulz

Christopher Imes

CHAPTER 1. INTRODUCTION

Chapter 2

The Application
Programming Interface

(APT)

2.1 Introduction

In general the API is very simple to memorize and use. Most of the functions
return either void or int. Functions that return int will return CRYPT _OK
if the function was successful or one of the many error codes if it failed. Certain
functions that return int will return —1 to indicate an error. These functions
will be explicitly commented upon. When a function does return a CRYPT
error code it can be translated into a string with

const char *error_to_string(int errno);

An example of handling an error is:

void somefunc(void)

{

int errno;
/* call a cryptographic function */
if ((errno = some_crypto_function(...)) != CRYPT_OK) {

printf("A crypto error occured, %s\n", error_to_string(errno));

13

14CHAPTER 2. THE APPLICATION PROGRAMMING INTERFACE (API)

/* perform error handling */

3

/* continue on if no error occured */

There is no initialization routine for the library and for the most part the
code is thread safe. The only thread related issue is if you use the same sym-
metric cipher, hash or public key state data in multiple threads. Normally that
is not an issue.

To include the prototypes for “LibTomCrypt.a” into your own program sim-
ply include “mycrypt.h” like so:

#include <mycrypt.h>
int main(void) {
return O;

}

The header file “mycrypt.h” also includes “stdio.h”, “string.h”, “stdlib.h”,
“time.h”, “ctype.h” and “mpi.h” (the bignum library routines).

2.2 Macros

There are a few helper macros to make the coding process a bit easier. The
first set are related to loading and storing 32/64-bit words in little/big endian
format. The macros are:

STORE32L(x, y) unsigned long x, unsigned char *y z—yl0...3
STORE64L(x, y) | unsigned long long x, unsigned char *y x—yl0...7
LOAD32L(x, y) unsigned long x, unsigned char *y y[0...3] =z
LOAD64L(x, y) unsigned long long x, unsigned char *y yl0...7 — =z
STORE32H(x, y) unsigned long x, unsigned char *y x—y[3...0
STOREG64H(x, y) | unsigned long long x, unsigned char *y x—yl[7...0
LOAD32H(x, y) unsigned long x, unsigned char *y y3...0] =z
LOADG64H(x, y) | unsigned long long x, unsigned char *y y[7...0] - x
BSWAP(x) unsigned long x Swaps the byte order of x.

There are 32-bit cyclic rotations as well:

ROL(x, y) | unsigned long x, unsigned longy | z <<y
ROR(x, y) | unsigned long x, unsigned longy | 2 >>y

2.3. FUNCTIONS WITH VARIABLE LENGTH OUTPUT 15

2.3 Functions with Variable Length Output

Certain functions such as (for example) “rsa_export()” give an output that is
variable length. To prevent buffer overflows you must pass it the length of the
bufferl] where the output will be stored. For example:

#include <mycrypt.h>
int main(void) {
rsa_key key;
unsigned char buffer[1024];
unsigned long x;
int errno;

/* ... Make up the RSA key somehow */

/* lets export the key, set x to the size of the output buffer */

x = sizeof (buffer);

if ((errno = rsa_export(buffer, &x, PK_PUBLIC, &key)) != CRYPT_OK) {
printf ("Export error: %s\n", error_to_string(errno));
return -1;

}

/* if rsa_export() was successful then x will have the size of the output */
printf("RSA exported key takes %d bytes\n", x);

/* ... do something with the buffer */

return 0O;

}

In the above example if the size of the RSA public key was more than 1024
bytes this function would not store anything in either “buffer” or “x” and simply
return an error code. If the function suceeds it stores the length of the output

[

back into “x” so that the calling application will know how many bytes used.

2.4 Functions that need a PRNG

Certain functions such as “rsa_make key()” require a PRNG. These functions do
not setup the PRNG themselves so it is the responsibility of the calling function

IExtensive error checking is not in place but it will be in future releases so it is a good idea
to follow through with these guidelines.

16CHAPTER 2. THE APPLICATION PROGRAMMING INTERFACE (API)

to initialize the PRNG before calling them.

2.5 Functions that use Arrays of Octets

Most functions require inputs that are arrays of the data type “unsigned char”.
Whether it is a symmetric key, IV for a chaining mode or public key packet it
is assumed that regardless of the actual size of “unsigned char” only the lower
eight bits contain data. For example, if you want to pass a 256 bit key to a
symmetric ciphers setup routine you must pass it in (a pointer to) an array of
32 “unsigned char” variables. Certain routines (such as SAFER+) take special
care to work properly on platforms where an “unsigned char” is not eight bits.

For the purposes of this library the term “byte” will refer to an octet or
eight bit word. Typically an array of type “byte” will be synonymous with an
array of type “unsigned char”.

Chapter 3

Symmetric Block Ciphers

3.1 Core Functions

Libtomerypt provides several block ciphers all in a plain vanilla ECB block
mode. Its important to first note that you should never use the ECB modes
directly to encrypt data. Instead you should use the ECB functions to make a
chaining mode or use one of the provided chaining modes. All of the ciphers
are written as ECB interfaces since it allows the rest of the API to grow in a
modular fashion.

All ciphers store their scheduled keys in a single data type called “symmet-
ric_key”. This allows all ciphers to have the same prototype and store their
keys as naturally as possible. All ciphers provide five visible functions which
are (given that XXX is the name of the cipher):

int XXX_setup(const unsigned char *key, int keylen, int rounds,
symmetric_key *skey) ;

The XXX _setup() routine will setup the cipher to be used with a given
number of rounds and a given key length (in bytes). The number of rounds can
be set to zero to use the default, which is generally a good idea.

If the function returns successfully the variable “skey” will have a scheduled
key stored in it. Its important to note that you should only used this scheduled
key with the intended cipher. For example, if you call “blowfish_setup()” do
not pass the scheduled key onto “rc5_ecb_encrypt()”. All setup functions do not
allocate memory off the heap so when you are done with a key you can simply
discard it (e.g. they can be on the stack).

17

18 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

To encrypt or decrypt a block in ECB mode there are these two functions:

void XXX_ecb_encrypt(const unsigned char *pt, unsigned char *ct,
symmetric_key *skey);

void XXX_ecb_decrypt(const unsigned char *ct, unsigned char *pt,
symmetric_key *skey);

These two functions will encrypt or decrypt (respectively) a single block of textl
and store the result where you want it. It is possible that the input and output
buffer are the same buffer. For the encrypt function “pt”E is the input and “ct”
is the output. For the decryption function its the opposite. To test a particular
cipher against test vectord] call:

int XXX_test(void);

This function will return CRYPT_OK if the cipher matches the test vectors
from the design publication it is based upon. Finally for each cipher there is a
function which will help find a desired key size:

int XXX_keysize(int *keysize);

Essentially it will round the input keysize in “keysize” down to the next appro-
priate key size. This function return CRYPT_OK if the key size specified is
acceptable. For example:

#include <mycrypt.h>
int main(void)
{

int keysize, errno;

/* now given a 20 byte key what keysize does Twofish want to use? */

keysize = 20;

if ((errno = twofish_keysize(&keysize)) != CRYPT_OK) {
printf ("Error getting key size: %s\n", error_to_string(errno));
return -1;

}

printf("Twofish suggested a key size of %d\n", keysize);

return O;

IThe size of which depends on which cipher you are using.
2pt stands for plaintext.
3 As published in their design papers.

3.2. KEY SIZES AND NUMBER OF ROUNDS 19

This should indicate a keysize of sixteen bytes is suggested. An example snippet
that encodes a block with Blowfish in ECB mode is below.

#include <mycrypt.h>
int main(void)

{
unsigned char pt[8], ct[8], keyl[8];
symmetric_key skey;
int errno;

/* ... key is loaded appropriately in ‘‘key’’ ... */
/* ... load a block of plaintext in ‘‘pt’’ ... x/

/* schedule the key */

if ((errno = blowfish_setup(key, 8, 0, &skey)) != CRYPT_OK) {
printf("Setup error: %s\n", error_to_string(errno));
return -1;

}

/* encrypt the block */
blowfish_ecb_encrypt(pt, ct, &skey);

/* decrypt the block */
blowfish_ecb_decrypt(ct, pt, &skey);

return O;

3.2 Key Sizes and Number of Rounds

As a general rule of thumb do not use symmetric keys under 80 bits if you can.
Only a few of the ciphers support smaller keys (mainly for test vectors anyways).
Ideally your application should be making at least 256 bit keys. This is not
because you're supposed to be paranoid. Its because if your PRNG has a bias
of any sort the more bits the better. For example, if you have Pr[X = 1] = %i’y
where |y| > 0 then the total amount of entropy in N bits is N - —logs (% + |’y|)
So if v were 0.25 (a severe bias) a 256-bit string would have about 106 bits of
entropy whereas a 128-bit string would have only 53 bits of entropy.

The number of rounds of most ciphers is not an option you can change. Only
RC5 allows you to change the number of rounds. By passing zero as the number

20 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

of rounds all ciphers will use their default number of rounds. Generally the
ciphers are configured such that the default number of rounds provide adequate
security for the given block size.

3.3 The Cipher Descriptors

To facilitate automatic routines an array of cipher descriptors is provided in the
array “cipher_descriptor”. An element of this array has the following format:

struct _cipher_descriptor {
char *name;
unsigned long min_key_length, max_key_length,
block_length, default_rounds;

int (*setup) (const unsigned char *key, int keylength,
int num_rounds, symmetric_key *skey);

void (*ecb_encrypt) (const unsigned char #*pt, unsigned char *ct,
symmetric_key *key);

void (*ecb_decrypt) (const unsigned char *ct, unsigned char *pt,
symmetric_key *key);

int (*test) (void);

int (xkeysize) (int *desired_keysize);

Where “name” is the lower case ASCII version of the name. The fields
“min_key_length”, “max_key_length” and “block_length” are all the number of
bytes not bits. As a good rule of thumb it is assumed that the cipher sup-
ports the min and max key lengths but not always everything in between. The
“default_rounds” field is the default number of rounds that will be used.

The remaining fields are all pointers to the core functions for each cipher.
The end of the cipher_descriptor array is marked when “name” equals NULL.

As of this release the current cipher_descriptors elements are

3.3. THE CIPHER DESCRIPTORS

Name Descriptor Name | Block Size | Key Range Rounds
Blowfish blowfish_desc 8 8 ... 56 16
X-Tea xtea_desc 8 16 32
RC2 rc2_desc 8 8 .. 128 16
RC5-32/12/b rcb_desc 8 8 ... 128 12 ... 24
RC6-32/20/b rc6_desc 16 8 ... 128 20
SAFERA+ saferp_desc 16 16, 24, 32 8,12, 16
Safer K64 safer_k64_desc 8 8 6.. 13
Safer SK64 safer_sk64_desc 8 8 6. 13
Safer K128 safer_k128_desc 8 16 6. 13
Safer SK128 safer_sk128_desc 8 16 6.. 13
AES aes_desc 16 16, 24, 32 | 10, 12, 14
Twofish twofish_desc 16 16, 24, 32 16
DES des_desc 8 7 16
3DES (EDE mode) des3_desc 8 21 16
CAST5 (CAST-128) cast5_desc 8 5..16 12, 16
Noekeon noekeon_desc 16 16 16
Skipjack skipjack_desc 8 10 32

3.3.1 Notes

For the 64-bit SAFER famliy of ciphers (e.g K64, SK64, K128, SK128) the
ecb_encrypt() and ecb_decrypt() functions are the same. So if you want to
use those functions directly just call safer_ecb_encrypt() or safer_ecb_decrypt()
respectively.

Note that for “DES” and “3DES” they use 8 and 24 byte keys but only 7 and
21 [respectively] bytes of the keys are in fact used for the purposes of encryption.
My suggestion is just to use random 8/24 byte keys instead of trying to make a
8/24 byte string from the real 7/21 byte key.

Note that “Twofish” has additional configuration options that take place
at build time. These options are found in the file “mycrypt_cfg.h”. The first
option is “TWOFISH_SMALL” which when defined will force the Twofish code
to not pre-compute the Twofish “g(X)” function as a set of four 8 x 32 s-boxes.
This means that a scheduled key will require less ram but the resulting cipher
will be slower. The second option is “TWOFISH_TABLES” which when defined
will force the Twofish code to use pre-computed tables for the two s-boxes qqg, ¢1
as well as the multiplication by the polynomials 5B and EF used in the MDS
multiplication. As a result the code is faster and slightly larger. The speed
increase is useful when “TWOFISH_.SMALL” is defined since the s-boxes and
MDS multiply form the heart of the Twofish round function.

22 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

TWOFISH.SMALL | TWOFISH_TABLES | Speed and Memory (per key)

undefined undefined Very fast, 4.2KB of ram.

undefined defined As above, faster keysetup, larger code (1KB more).
defined undefined Very slow, 0.2KB of ram.

defined defined Somewhat faster, 0.2KB of ram, larger code.

To work with the cipher_descriptor array there is a function:
int find_cipher(char *name)

Which will search for a given name in the array. It returns negative one if the
cipher is not found, otherwise it returns the location in the array where the
cipher was found. For example, to indirectly setup Blowfish you can also use:

#include <mycrypt.h>

int main(void)

{
unsigned char key[8];
symmetric_key skey;
int errno;

/* you must register a cipher before you use it */

if (register_cipher(&blowfish_desc)) == -1) {
printf ("Unable to register Blowfish cipher.");
return -1;

/* generic call to function (assuming the key in key[] was already setup) */

if ((errno = cipher_descriptor[find_cipher("blowfish")].setup(key, 8, 0, &skey))

printf ("Error setting up Blowfish: %s\n", error_to_string(errno));
return -1;

}

/* ... use cipher ... */

A good safety would be to check the return value of “find_cipher()” before
accessing the desired function. In order to use a cipher with the descriptor table
you must register it first using:

int register_cipher(const struct _cipher_descriptor *cipher);

3.4. SYMMETRIC MODES OF OPERATIONS 23

Which accepts a pointer to a descriptor and returns the index into the global
descriptor table. If an error occurs such as there is no more room (it can have
32 ciphers at most) it will return -1. If you try to add the same cipher more
than once it will just return the index of the first copy. To remove a cipher call:

int unregister_cipher(const struct _cipher_descriptor *cipher);

Which returns CRYPT_OK if it removes it otherwise it returns CRYPT_ERROR.
Consider:

#include <mycrypt.h>
int main(void)

{
int errno;
/* register the cipher */
if (register_cipher(&rijndael_desc) == -1) {
printf ("Error registering Rijndael\n");
return -1;
}
/* use Rijndael */
/* remove it */
if ((errno = unregister_cipher(&rijndael_desc)) != CRYPT_OK) {
printf ("Error removing Rijndael: %s\n", error_to_string(errno));
return -1;
}
return O;
}

This snippet is a small program that registers only Rijndael only. Note you
must register ciphers before using the PK code since all of the PK code (RSA,
DH and ECC) rely heavily on the descriptor tables.

3.4 Symmetric Modes of Operations

3.4.1 Background

A typical symmetric block cipher can be used in chaining modes to effectively
encrypt messages larger than the block size of the cipher. Given a key k, a

24 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

plaintext P and a cipher E we shall denote the encryption of the block P under
the key k as E(P). In some modes there exists an initial vector denoted as
C_;.

ECB Mode

ECB or Electronic Codebook Mode is the simplest method to use. It is given
as:

Ci = Ex(P) (3.1)

This mode is very weak since it allows people to swap blocks and perform replay
attacks if the same key is used more than once.

CBC Mode

CBC or Cipher Block Chaining mode is a simple mode designed to prevent
trivial forms of replay and swap attacks on ciphers. It is given as:

Ci = Ex(P @ Ci_y) (3.2)

It is important that the initial vector be unique and preferably random for each
message encrypted under the same key.

CTR Mode

CTR or Counter Mode is a mode which only uses the encryption function of
the cipher. Given a initial vector which is treated as a large binary counter the
CTR mode is given as:

C_1=C_1+1 (mod 2W)
C;=P & Ek(C_l) (33)

Where W is the size of a block in bits (e.g. 64 for Blowfish). As long as the
initial vector is random for each message encrypted under the same key replay
and swap attacks are infeasible. CTR mode may look simple but it is as secure
as the block cipher is under a chosen plaintext attack (provided the initial vector
is unique).

3.4. SYMMETRIC MODES OF OPERATIONS 25

CFB Mode

CFB or Ciphertext Feedback Mode is a mode akin to CBC. It is given as:
Ci=P&C,
C_1=Ex(C)) (3.4)

Note that in this library the output feedback width is equal to the size of the
block cipher. That is this mode is used to encrypt whole blocks at a time.
However, the library will buffer data allowing the user to encrypt or decrypt
partial blocks without a delay. When this mode is first setup it will initially
encrypt the initial vector as required.

OFB Mode

OFB or Output Feedback Mode is a mode akin to CBC as well. It is given as:

Oy = Bu(C_y)
Ci=P,dC_4 (35)

Like the CFB mode the output width in CFB mode is the same as the width

of the block cipher. OFB mode will also buffer the output which will allow you
to encrypt or decrypt partial blocks without delay.

3.4.2 Choice of Mode

My personal preference is for the CTR mode since it has several key benefits:
1. No short cycles which is possible in the OFB and CFB modes.

2. Provably as secure as the block cipher being used under a chosen plaintext
attack.

3. Technically does not require the decryption routine of the cipher.
4. Allows random access to the plaintext.

5. Allows the encryption of block sizes that are not equal to the size of the
block cipher.

26 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

The CTR, CFB and OFB routines provided allow you to encrypt block sizes
that differ from the ciphers block size. They accomplish this by buffering the
data required to complete a block. This allows you to encrypt or decrypt any
size block of memory with either of the three modes.

The ECB and CBC modes process blocks of the same size as the cipher at
a time. Therefore they are less flexible than the other modes.

3.4.3 Implementation

The library provides simple support routines for handling CBC, CTR, CFB,
OFB and ECB encoded messages. Assuming the mode you want is XXX there is
a structure called “symmetric_ XXX” that will contain the information required
to use that mode. They have identical setup routines (except ECB mode for
obvious reasons):

int XXX_start(int cipher, const unsigned char *IV,
const unsigned char *key, int keylen,
int num_rounds, symmetric_XXX *XXX);

int ecb_start(int cipher, const unsigned char x*key, int keylen,
int num_rounds, symmetric_ECB *ecb) ;

In each case “cipher” is the index into the cipher_descriptor array of the
cipher you want to use. The “IV” value is the initialization vector to be used
with the cipher. You must fill the IV yourself and it is assumed they are the
same length as the block sizdd of the cipher you choose. It is important that the
IV be random for each unique message you want to encrypt. The parameters
“key”, “keylen” and “num_rounds” are the same as in the XXX _setup() function
call. The final parameter is a pointer to the structure you want to hold the
information for the mode of operation.

Both routines return CRYPT_OK if the cipher initialized correctly, oth-
erwise they return an error code. To actually encrypt or decrypt the following
routines are provided:

int XXX_encrypt(const unsigned char #pt, unsigned char *ct,
symmetric_XXX *XXX);

int XXX_decrypt(const unsigned char *ct, unsigned char *pt,
symmetric_XXX *XXX);

4In otherwords the size of a block of plaintext for the cipher, e.g. 8 for DES, 16 for AES,
etc.

3.4. SYMMETRIC MODES OF OPERATIONS 27

int YYY_encrypt(const unsigned char *pt, unsigned char *ct,
unsigned long len, symmetric_YYY *YYY);

int YYY_decrypt(const unsigned char *ct, unsigned char *pt,
unsigned long len, symmetric_YYY *YYY);

Where “XXX” is one of (ecb, cbc) and “YYY” is one of (ctr, ofb, cfb). In the
CTR, OFB and CFB cases “len” is the size of the buffer (as number of chars)
to encrypt or decrypt. The CTR, OFB and CFB modes are order sensitive but
not chunk sensitive. That is you can encrypt “ABCDEF” in three calls like
“AB”, “CD”, “EF” or two like “ABCDE” and “F” and end up with the same
ciphertext. However, encrypting “ABC” and “DABC” will result in different
ciphertexts. All five of the modes will return CRYPT _OK on success from the
encrypt or decrypt functions.

To decrypt in either mode you simply perform the setup like before (recall
you have to fetch the IV value you used) and use the decrypt routine on all
of the blocks. When you are done working with either mode you should wipe
the memory (using “zeromem()”) to help prevent the key from leaking. For
example:

28 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

#include <mycrypt.h>

int main(void)

{
unsigned char key[16], IV[16], buffer[512];
symmetric_CTR ctr;
int x, errno;

/* register twofish first */

if (register_cipher(&twofish_desc) == -1) {
printf ("Error registering cipher.\n");
return -1;

/* somehow fill out key and IV */

/* start up CTR mode */

if ((errno = ctr_start(find_cipher("twofish"), IV, key, 16, 0, &ctr)) !'= CRYPT_OK) -
printf ("ctr_start error: ’%s\n", error_to_string(errno));
return -1;

/* somehow fill buffer than encrypt it */

if ((errno = ctr_encrypt(buffer, buffer, sizeof(buffer), &ctr)) != CRYPT_OK) {
printf ("ctr_encrypt error: Y%s\n", error_to_string(errno));
return -1;

}

/* make use of ciphertext... */
/* clear up and return */
zeromem(key, sizeof (key));

zeromem(&ctr, sizeof(ctr));

return O;

3.5. ENCRYPT AND AUTHENTICATE MODES 29

3.5 Encrypt and Authenticate Modes

3.5.1 EAX Mode

LibTomCrypt provides support for a mode called EAXH in a manner similar to
the way it was intended to be used.

First a short description of what EAX mode is before I explain how to use it.
EAX is a mode that requires a cipher, CTR and OMAC support and provides
encryption and authentication. It is initialized with a random “nonce” that can
be shared publicly as well as a “header” which can be fixed and public as well
as a random secret symmetric key.

The “header” data is meant to be meta-data associated with a stream that
isn’t private (e.g. protocol messages). It can be added at anytime during an
EAX stream and is part of the authentication tag. That is, changes in the
meta-data can be detected by an invalid output tag.

The mode can then process plaintext producing ciphertext as well as com-
pute a partial checksum. The actual checksum called a “tag” is only emitted
when the message is finished. In the interim though the user can process any
arbitrary sized message block to send to the recipient as ciphertext. This makes
the EAX mode especially suited for streaming modes of operation.

The mode is initialized with the following function.

int eax_init(eax_state *eax, int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen);

Where “eax” is the EAX state. “cipher” is the index of the desired cipher
in the descriptor table. “key” is the shared secret symmetric key of length
“keylen”. “nonce” is the random public string of length “noncelen”. “header”
is the random (or fixed or NULL) header for the message of length “headerlen”.

When this function completes “eax” will be initialized such that you can now
either have data decrypted or encrypted in EAX mode. Note that if “headerlen”
is zero you may pass “header” as NULL. It will still initialize the EAX “H”
value to the correct value.

To encrypt or decrypt data in a streaming mode use the following.

int eax_encrypt(eax_state *eax, const unsigned char *pt,
unsigned char *ct, unsigned long length);

5See M. Bellare, P. Rogaway, D. Wagner, A Conventional Authenticated-Encryption Mode.

30 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

int eax_decrypt(eax_state *eax, const unsigned char *ct,
unsigned char *pt, unsigned long length);

The function “eax_encrypt” will encrypt the bytes in “pt” of “length” bytes and
store the ciphertext in “ct”. Note that “ct” and “pt” may be the same region
in memory. This function will also send the ciphertext through the OMAC
function. The function “eax_decrypt” decrypts “ct” and stores it in “pt”. This
also allows “pt” and “ct” to be the same region in memory.

Note that both of these functions allow you to send the data in any gran-
ularity but the order is important. While the eax_init() function allows you to
add initial header data to the stream you can also add header data during the
EAX stream with the following.

Also note that you cannot both encrypt or decrypt with the same “eax”
context. For bi-directional communication you will need to initialize two EAX
contexts (preferably with different headers and nonces).

int eax_addheader(eax_state *eax,
const unsigned char *header, unsigned long length);

This will add the “length” bytes from “header” to the given “eax” stream.
Once the message is finished the “tag” (checksum) may be computed with the
following function.

int eax_done(eax_state *eax,
unsigned char *tag, unsigned long *taglen);

This will terminate the EAX state “eax” and store upto “taglen” bytes of the
message tag in “tag”. The function then stores how many bytes of the tag were
written out back into “taglen”.

The EAX mode code can be tested to ensure it matches the test vectors by
calling the following function.

int eax_test(void);

This requires that the AES (or Rijndael) block cipher be registered with the
cipher_descriptor table first.

3.5. ENCRYPT AND AUTHENTICATE MODES 31

3.5.2 0OCB Mode

LibTomCrypt provides support for a mode called OCBH in a mode somewhat
similar to as it was meant to be used.

OCB is an encryption protocol that simultaneously provides authentication.
It is slightly faster to use than EAX mode but is less flexible. Let’s review how
to initialize an OCB context.

int ocb_init(ocb_state *ocb, int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce);

This will initialize the “ocb” context using cipher descriptor “cipher”. It
will use a “key” of length “keylen” and the random “nonce”. Note that “nonce”
must be a random (public) string the same length as the block ciphers block
size (e.g. 16 for AES).

This mode has no “Associated Data” like EAX mode does which means you
cannot authenticate metadata along with the stream. To encrypt or decrypt
data use the following.

int ocb_encrypt(ocb_state *ocb, const unsigned char *pt, unsigned char *ct);
int ocb_decrypt(ocb_state *ocb, const unsigned char *ct, unsigned char *pt);

This will encrypt (or decrypt for the latter) a fixed length of data from “pt”
to “ct” (vice versa for the latter). They assume that “pt” and “ct” are the same
size as the block cipher’s block size. Note that you cannot call both functions
given a single “ocb” state. For bi-directional communication you will have to
initialize two “ocb” states (with difference nonces). Also “pt” and “ct” may
point to the same location in memory.

When you are finished encrypting the message you call the following function
to compute the tag.

int ocb_done_encrypt (ocb_state *ocb,
const unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen);

6See P. Rogaway, M. Bellare, J. Black, T. Krovetz, “OCB: A Block Cipher Mode of Oper-
ation for Efficient Authenticated Encryption”.

32 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

This will terminate an encrypt stream “ocb”. If you have trailing bytes of
plaintext that will not complete a block you can pass them here. This will also
encrypt the “ptlen” bytes in “pt” and store them in “ct”. It will also store upto
“taglen” bytes of the tag into “tag”.

Note that “ptlen” must be less than or equal to the block size of block cipher
chosen. Also note that if you have an input message equal to the length of the
block size then you pass the data here (not to ocb_encrypt()) only.

To terminate a decrypt stream and compared the tag you call the following.

int ocb_done_decrypt(ocb_state *ocb,
const unsigned char *ct, unsigned long ctlen,
unsigned char *pt,
const unsigned char *tag, unsigned long taglen,
int *res);

Similarly to the previous function you can pass trailing message bytes into
this function. This will compute the tag of the message (internally) and then
compare it against the “taglen” bytes of “tag” provided. By default “res” is set
to zero. If all “taglen” bytes of “tag” can be verified then “res” is set to one
(authenticated message).

To make life simpler the following two functions are provided for memory
bound OCB.

int ocb_encrypt_authenticate_memory(int cipher,

const unsigned char x*key, unsigned long keylen,
const unsigned char *nonce,
const unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen);

This will OCB encrypt the message “pt” of length “ptlen” and store the
ciphertext in “ct”. The length “ptlen” can be any arbitrary length.

int ocb_decrypt_verify_memory(int cipher,

const unsigned char x*key, unsigned long keylen,

const unsigned char *nonce,

const unsigned char *ct, unsigned long ctlen,
unsigned char *pt,

const unsigned char *tag, unsigned long taglen,

int *xres) ;

3.5. ENCRYPT AND AUTHENTICATE MODES 33

Similarly this will OCB decrypt and compare the internally computed tag
against the tag provided. “res” is set appropriately.

34

CHAPTER 3. SYMMETRIC BLOCK CIPHERS

Chapter 4

One-Way Cryptographic
Hash Functions

4.1 Core Functions

Like the ciphers there are hash core functions and a universal data type to hold
the hash state called “hash_state”. To initialize hash XXX (where XXX is the

name) call:
void XXX_init(hash_state *md);

This simply sets up the hash to the default state governed by the specifica-
tions of the hash. To add data to the message being hashed call:

int XXX_process(hash_state *md, const unsigned char *in, unsigned long len);

Essentially all hash messages are virtually inﬁnitelyﬂ long message which are
buffered. The data can be passed in any sized chunks as long as the order of
the bytes are the same the message digest (hash output) will be the same. For
example, this means that:

md5_process(&md, "hello ", 6);
md5_process(&md, "world", 5);

Will produce the same message digest as the single call:

1Most hashes are limited to 264 bits or 2,305,843,009,213,693,952 bytes.

35

36 CHAPTER 4. ONE-WAY CRYPTOGRAPHIC HASH FUNCTIONS

md5_process(&md, "hello world", 11);
To finally get the message digest (the hash) call:

int XXX_done(hash_state *md,
unsigned char *out);

This function will finish up the hash and store the result in the “out” array.
You must ensure that “out” is long enough for the hash in question. Often
hashes are used to get keys for symmetric ciphers so the “XXX _done()” functions
will wipe the “md” variable before returning automatically.

To test a hash function call:

int XXX_test(void);

This will return CRYPTO_OK if the hash matches the test vectors, other-
wise it returns an error code. An example snippet that hashes a message with
md5 is given below.

#include <mycrypt.h>
int main(void)

{
hash_state md;
unsigned char *in = "hello world", out[16];

/* setup the hash */
md5_init (&md) ;

/* add the message */
md5_process(&md, in, strlen(in));

/* get the hash in out[0..15] */
md5_done (&md, out);

return O;

4.2 Hash Descriptors

Like the set of ciphers the set of hashes have descriptors too. They are stored
in an array called “hash_descriptor” and are defined by:

4.2. HASH DESCRIPTORS 37

struct _hash_descriptor {
char *name;
unsigned long hashsize; /* digest output size in bytes */
unsigned long blocksize; /* the block size the hash uses */
void (*init) (hash_state *);

int (*process) (hash_state *, const unsigned char *, unsigned long);

int (*done) (hash_state *, unsigned char *);
int (*xtest) (void);
};

Similarly “name” is the name of the hash function in ASCII (all lowercase).
“hashsize” is the size of the digest output in bytes. The remaining fields are
pointers to the functions that do the respective tasks. There is a function to
search the array as well called “int find_hash(char *name)”. It returns -1 if the
hash is not found, otherwise the position in the descriptor table of the hash.

You can use the table to indirectly call a hash function that is chosen at
runtime. For example:

#include <mycrypt.h>

int main(void)

{
unsigned char buffer[100], hash[MAXBLOCKSIZE];
int idx, x;
hash_state md;

/* register hashes */

if (register_hash(&md5_desc) == -1) {
printf ("Error registering MD5.\n");
return -1;

}
/* register other hashes ... */

/* prompt for name and strip newline */
printf ("Enter hash name: \n");
fgets(buffer, sizeof(buffer), stdin);
buffer[strlen(buffer) - 1] = 0;

/* get hash index */
idx = find_hash(buffer);
if (idx == -1) {
printf("Invalid hash name!\n");

38 CHAPTER 4. ONE-WAY CRYPTOGRAPHIC HASH FUNCTIONS

return -1;

}

/* hash input until blank line */

hash_descriptor[idx] .init (&md) ;

while (fgets(buffer, sizeof(buffer), stdin) != NULL)
hash_descriptor[idx] .process(&md, buffer, strlen(buffer));

hash_descriptor[idx] .done(&md, hash);

/* dump to screen */

for (x = 0; x < hash_descriptor[idx].hashsize; x++)
printf ("%02x ", hash[x]);

printf("\n");

return O;

Note the usage of “MAXBLOCKSIZE”. In Libtomcrypt no symmetric block,
key or hash digest is larger than MAXBLOCKSIZE in length. This provides a
simple size you can set your automatic arrays to that will not get overrun.

There are three helper functions as well:

int hash_memory(int hash, const unsigned char *data,
unsigned long len, unsigned char *dst,
unsigned long *outlen);

int hash_file(int hash, const char *fname,
unsigned char *dst,
unsigned long *outlen);

int hash_filehandle(int hash, FILE *in,
unsigned char *dst, unsigned long *outlen);

The “hash” parameter is the location in the descriptor table of the hash
(e.g. the return of find_hash()). The “*foutlen” variable is used to keep track
of the output size. You must set it to the size of your output buffer before
calling the functions. When they complete succesfully they store the length of
the message digest back in it. The functions are otherwise straightforward. The
“hash_filehandle” function assumes that “in” is an file handle opened in binary
mode. It will hash to the end of file and not reset the file position when finished.

To perform the above hash with md5 the following code could be used:

#include <mycrypt.h>

4.2. HASH DESCRIPTORS 39

int main(void)

{
int idx, errno;
unsigned long len;
unsigned char out[MAXBLOCKSIZE];
/* register the hash */
if (register_hash(&md5_desc) == -1) {
printf ("Error registering MD5.\n");
return -1;
}
/* get the index of the hash */
idx = find_hash("md5");
/* call the hash */
len = sizeof (out);
if ((errno = hash_memory(idx, "hello world", 11, out, &len)) != CRYPT_OK) {
printf ("Error hashing data: %s\n", error_to_string(errno));
return -1;
}
return O;
}
The following hashes are provided as of this release:
Name Descriptor Name | Size of Message Digest (bytes)
WHIRLPOOL whirlpool_desc 64
SHA-512 shab12_desc 64
SHA-384 sha384_desc 48
SHA-256 sha256_desc 32
SHA-224 sha224 desc 28
TIGER-192 tiger_desc 24
SHA-1 shal_desc 20
RIPEMD-160 rmd160_desc 20
RIPEMD-128 rmd128_desc 16
MD5 mdb_desc 16
MD4 md4_desc 16
MD2 md2_desc 16

Similar to the cipher descriptor table you must register your hash algorithms
before you can use them. These functions work exactly like those of the cipher

40 CHAPTER 4. ONE-WAY CRYPTOGRAPHIC HASH FUNCTIONS

registration code. The functions are:

int register_hash(const struct _hash_descriptor *hash);
int unregister_hash(const struct _hash_descriptor *hash);

4.2.1 Notice

It is highly recommended that you not use the MD4 or MD5 hashes for the
purposes of digital signatures or authentication codes. These hashes are pro-
vided for completeness and they still can be used for the purposes of password
hashing or one-way accumulators (e.g. Yarrow).

The other hashes such as the SHA-1, SHA-2 (that includes SHA-512, SHA-
384 and SHA-256) and TIGER-192 are still considered secure for all purposes
you would normally use a hash for.

Chapter 5

Message Authentication
Codes

5.1 HMAC Protocol

Thanks to Dobes Vandermeer the library now includes support for hash based
message authenication codes or HMAC for short. An HMAC of a message is a
keyed authenication code that only the owner of a private symmetric key will be
able to verify. The purpose is to allow an owner of a private symmetric key to
produce an HMAC on a message then later verify if it is correct. Any impostor
or eavesdropper will not be able to verify the authenticity of a message.

The HMAC support works much like the normal hash functions except that
the initialization routine requires you to pass a key and its length. The key is
much like a key you would pass to a cipher. That is, it is simply an array of
octets stored in chars. The initialization routine is:

int hmac_init(hmac_state *hmac, int hash,
const unsigned char *key, unsigned long keylen);

The “hmac” parameter is the state for the HMAC code. “hash” is the index into
the descriptor table of the hash you want to use to authenticate the message.
“key” is the pointer to the array of chars that make up the key. “keylen” is the
length (in octets) of the key you want to use to authenticate the message. To
send octets of a message through the HMAC system you must use the following
function:

41

42 CHAPTER 5. MESSAGE AUTHENTICATION CODES

int hmac_process(hmac_state *hmac, const unsigned char *buf,
unsigned long len);

“hmac” is the HMAC state you are working with. “buf” is the array of octets to
send into the HMAC process. “len” is the number of octets to process. Like the
hash process routines you can send the data in arbitrarly sized chunks. When
you are finished with the HMAC process you must call the following function
to get the HMAC code:

int hmac_done(hmac_state *hmac, unsigned char *hashOut,
unsigned long *outlen);

“hmac” is the HMAC state you are working with. “hashOut” is the array of
octets where the HMAC code should be stored. You must set “outlen” to the
size of the destination buffer before calling this function. It is updated with the
length of the HMAC code produced (depending on which hash was picked). If
“outlen” is less than the size of the message digest (and ultimately the HMAC
code) then the HMAC code is truncated as per FIPS-198 specifications (e.g.
take the first “outlen” bytes).

There are two utility functions provided to make using HMACs easier todo.
They accept the key and information about the message (file pointer, address
in memory) and produce the HMAC result in one shot. These are useful if you
want to avoid calling the three step process yourself.

int hmac_memory(int hash, const unsigned char *key, unsigned long keylen,
const unsigned char *data, unsigned long len,
unsigned char *dst, unsigned long *dstlen);

This will produce an HMAC code for the array of octets in “data” of length
“len”. The index into the hash descriptor table must be provided in “hash”. It
uses the key from “key” with a key length of “keylen”. The result is stored in
the array of octets “dst” and the length in “dstlen”. The value of “dstlen” must
be set to the size of the destination buffer before calling this function. Similarly
for files there is the following function:

int hmac_file(int hash, const char *fname, const unsigned char x*key,
unsigned long keylen,
unsigned char *dst, unsigned long *dstlen);

“hash” is the index into the hash descriptor table of the hash you want to use.
“fname” is the filename to process. “key” is the array of octets to use as the

5.1. HMAC PROTOCOL 43

key of length “keylen”. “dst” is the array of octets where the result should be
stored.
To test if the HMAC code is working there is the following function:

int hmac_test(void);

Which returns CRYPT_OK if the code passes otherwise it returns an error
code. Some example code for using the HMAC system is given below.

#include <mycrypt.h>
int main(void)
{
int idx, errno;
hmac_state hmac;
unsigned char key[16], dst[MAXBLOCKSIZE];
unsigned long dstlen;

/* register SHA-1 x/

if (register_hash(&shal_desc) == -1) {
printf ("Error registering SHA1\n");
return -1;

/* get index of SHA1l in hash descriptor table */
idx = find_hash("shal");

/* we would make up our symmetric key in "key[]" here */

/* start the HMAC */

if ((errno = hmac_init(&hmac, idx, key, 16)) != CRYPT_OK) {
printf ("Error setting up hmac: %s\n", error_to_string(errno));
return -1;

/* process a few octets */

if ((errno = hmac_process(&hmac, "hello", 5) != CRYPT_OK) {
printf ("Error processing hmac: %s\n", error_to_string(errno));
return -1;

/* get result (presumably to use it somehow...) */
dstlen = sizeof(dst);
if ((errno = hmac_done(&hmac, dst, &dstlen)) !'= CRYPT_OK) {

44 CHAPTER 5. MESSAGE AUTHENTICATION CODES

printf ("Error finishing hmac: %s\n", error_to_string(errno));
return -1;

}
printf ("The hmac is %lu bytes long\n", dstlen);

/* return */
return O;

5.2 OMAC Support

OMACﬂ, which stands for One-Key CBC MAC is an algorithm which produces
a Message Authentication Code (MAC) using only a block cipher such as AES.
From an API standpoint the OMAC routines work much like the HMAC routines
do. Instead in this case a cipher is used instead of a hash.

To start an OMAC state you call

int omac_init(omac_state *omac, int cipher,
const unsigned char *key, unsigned long keylen);

The “omac” variable is the state for the OMAC algorithm. “cipher” is the
index into the cipher_descriptor table of the cipheIE you wish to use. “key” and
“keylen” are the keys used to authenticate the data.

To send data through the algorithm call

int omac_process(omac_state *state,
const unsigned char *buf, unsigned long len);

This will send “len” bytes from “buf” through the active OMAC state “state”.
Returns CRYPT_OK if the function succeeds. The function is not sensitive
to the granularity of the data. For example,

omac_process (&mystate, "hello", 5);
omac_process (&mystate, " world", 6);

Would produce the same result as,

omac_process (&mystate, "hello world", 11);

1ht‘cp ://crypt.cis.ibaraki.ac.jp/omac/omac.html
2The cipher must have a 64 or 128 bit block size. Such as CAST5, Blowfish, DES, AES,
Twofish, etc.

http://crypt.cis.ibaraki.ac.jp/omac/omac.html

5.2. OMAC SUPPORT 45

When you are done processing the message you can call the following to
compute the message tag.

int omac_done(omac_state *state,
unsigned char *out, unsigned long *outlen);

Which will terminate the OMAC and output the tag (MAC) to “out”. Note
that unlike the HMAC and other code “outlen” can be smaller than the default
MAC size (for instance AES would make a 16-byte tag). Part of the OMAC
specification states that the output may be truncated. So if you pass in outlen =
5 and use AES as your cipher than the output MAC code will only be five bytes
long. If “outlen” is larger than the default size it is set to the default size to
show how many bytes were actually used.

Similar to the HMAC code the file and memory functions are also provided.
To OMAC a buffer of memory in one shot use the following function.

int omac_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *msg, unsigned long msglen,
unsigned char *out, unsigned long *outlen);

This will compute the OMAC of “msglen” bytes of “msg” using the key “key”
of length “keylen” bytes and the cipher specified by the “cipher”’th entry in the
cipher_descriptor table. It will store the MAC in “out” with the same rules as
omac_done.

To OMAC a file use

int omac_file(int cipher,
const unsigned char *key, unsigned long keylen,
const char *filename,
unsigned char *out, unsigned long *outlen);

Which will OMAC the entire contents of the file specified by “filename”
using the key “key” of length “keylen” bytes and the cipher specified by the
“cipher”’th entry in the cipher_descriptor table. It will store the MAC in “out”
with the same rules as omac_done.

To test if the OMAC code is working there is the following function:

int omac_test(void);

Which returns CRYPT_OK if the code passes otherwise it returns an error
code. Some example code for using the OMAC system is given below.

46 CHAPTER 5. MESSAGE AUTHENTICATION CODES

#include <mycrypt.h>
int main(void)
{
int idx, err;
omac_state omac;
unsigned char key[16], dst[MAXBLOCKSIZE];
unsigned long dstlen;

/* register Rijndael */

if (register_cipher(&rijndael_desc) == -1) {
printf ("Error registering Rijndael\n");
return -1;

/* get index of Rijndael in cipher descriptor table */
idx = find_cipher("rijndael");

/* we would make up our symmetric key in "key[]" here */

/* start the OMAC */

if ((err = omac_init(&omac, idx, key, 16)) != CRYPT_OK) {
printf ("Error setting up omac: %s\n", error_to_string(err));
return -1;

}

/* process a few octets */

if ((err = omac_process(&omac, "hello", 5) != CRYPT_OK) {
printf ("Error processing omac: %s\n", error_to_string(err));
return -1;

}

/* get result (presumably to use it somehow...) */

dstlen = sizeof(dst);

if ((err = omac_done(&omac, dst, &dstlen)) '= CRYPT_OK) {
printf ("Error finishing omac: %s\n", error_to_string(err));
return -1;

}

printf ("The omac is %lu bytes long\n", dstlen);

/* return */
return O;

5.3. PMAC SUPPORT 47

5.3 PMAC Support

The PMACH protocol is another MAC algorithm that relies solely on a symmetric-
key block cipher. It uses essentially the same API as the provided OMAC code.
A PMAC state is initialized with the following.

int pmac_init(pmac_state *pmac, int cipher,
const unsigned char *key, unsigned long keylen);

Which initializes the “pmac” state with the given “cipher” and “key” of length
“keylen” bytes. The chosen cipher must have a 64 or 128 bit block size (e.x.
AES).

To MAC data simply send it through the process function.

int pmac_process(pmac_state *state,
const unsigned char *buf, unsigned long len);

This will process “len” bytes of “buf” in the given “state”. The function is not
sensitive to the granularity of the data. For example,

pmac_process (&mystate, "hello", 5);
pmac_process (&mystate, " world", 6);

Would produce the same result as,
pmac_process(&mystate, "hello world", 11);

When a complete message has been processed the following function can be
called to compute the message tag.

int pmac_done(pmac_state *state,
unsigned char *out, unsigned long *outlen);

This will store upto “outlen” bytes of the tag for the given “state” into “out”.
Note that if “outlen” is larger than the size of the tag it is set to the amount of
bytes stored in “out”.

Similar to the PMAC code the file and memory functions are also provided.
To PMAC a buffer of memory in one shot use the following function.

3].Black, P.Rogaway, “A Block-Cipher Mode of Operation for Parallelizable Message Au-
thentication”

48 CHAPTER 5. MESSAGE AUTHENTICATION CODES

int pmac_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *msg, unsigned long msglen,
unsigned char *out, unsigned long *outlen);

This will compute the PMAC of “msglen” bytes of “msg” using the key “key”
of length “keylen” bytes and the cipher specified by the “cipher”’th entry in the
cipher_descriptor table. It will store the MAC in “out” with the same rules as
omac_done.

To PMAC a file use

int pmac_file(int cipher,
const unsigned char *key, unsigned long keylen,
const char *filename,
unsigned char *out, unsigned long *outlen);

Which will PMAC the entire contents of the file specified by “filename”
using the key “key” of length “keylen” bytes and the cipher specified by the
“cipher”’th entry in the cipher_descriptor table. It will store the MAC in “out”
with the same rules as omac_done.

To test if the PMAC code is working there is the following function:

int pmac_test(void);

Which returns CRYPT_OK if the code passes otherwise it returns an error
code.

Chapter 6

Pseudo-Random Number
(Generators

6.1 Core Functions

The library provides an array of core functions for Pseudo-Random Number
Generators (PRNGs) as well. A cryptographic PRNG is used to expand a
shorter bit string into a longer bit string. PRNGs are used wherever random
data is required such as Public Key (PK) key generation. There is a universal
structure called “prng_state”. To initialize a PRNG call:

int XXX_start(prng_state *prng);

This will setup the PRNG for future use and not seed it. In order for the
PRNG to be cryptographically useful you must give it entropy. Ideally you’d
have some OS level source to tap like in UNIX (see section 5.3). To add entropy
to the PRNG call:

int XXX_add_entropy(const unsigned char *in, unsigned long len,
prng_state *prng);

Which returns CRYPTO _OK if the entropy was accepted. Once you think
you have enough entropy you call another function to put the entropy into
action.

int XXX_ready(prng_state *prng);

49

50 CHAPTER 6. PSEUDO-RANDOM NUMBER GENERATORS

Which returns CRYPTO_OK if it is ready. Finally to actually read bytes
c