Federal Information
Processing Standar ds Publication 180-2

2002 August 1

Announcing the

SECURE HASH STANDARD

Federal Information Processing Standards Publications (FIPS PUBS) are issued by the National
Institute of Standards and Technology (NIST) after approval by the Secretary of Commerce
pursuant to Section 5131 of the Information Technology Management Reform Act of 1996
(Public Law 104-106), and the Computer Security Act of 1987 (Public Law 100-235).

1. Nameof Standard: Secure Hash Signature Standard (SHS) (FIPS PUB 180-2).
2. Category of Standard: Computer Security Standard, Cryptography.

3. Explanation: This Standard specifies four secure hash agorithms - SHA-1, SHA-256,
SHA-384, and SHA-512 - for computing a condensed representation of electronic data
(message). When a message of any length < 2°4 bits (for SHA-1 and SHA-256) or < 2128 hits (for
SHA-384 and SHA-512) is input to an algorithm, the result is an output called a message digest.
The message digests range in length from 160 to 512 bits, deperding on the algorithm. Secure
hash algorithms are typically used with other cryptographic agorithms, such as digital signature
algorithms and keyed-hash message authentication codes, or in the generation of random
numbers (bits).

The four hash agorithms specified in this standard are called secure because, for a given
algorithm, it is computationally infeasible 1) to find a message that corresponds to a given
message digest, or 2) to find two different messages that produce the same message digest. Any
change to a message will, with a very high probability, result in a different message digest. This
will result in a verification failure when the secure hash algorithm is used with a digital signature
algorithm or a keyed-hash message authentication algorithm.

This standard supersedes FIPS 180-1, adding three algorithms that are capable of producing
larger message digests. The SHA-1 agorithm specified herein is the same algorithm that was
specified previoudly in FIPS 180-1, although some of the notation has been modified to be
consistent with the notation used in the SHA-256, SHA-384, and SHA-512 agorithms.

4. Approving Authority: Secretary of Commerce.

5. Maintenance Agency: U.S. Department of Commerce, National Institute of Standards and
Technology (NIST), Information Technology Laboratory (ITL).

6. Applicability: This standard is applicable to all Federal departments and agencies for the
protection of sensitive unclassified information that is not subject to section 2315 of Title 10,
United States Code, or section 3502(2) of Title 44, United States Code. This standard shall be
implemented whenever a secure hash algorithm is required for Federal applications, including
use by other cryptographic algorithms and protocols. The adoption and use of this standard is
available to private and commercial organizations.

7. Specifications: Federal Information Processing Standard (FIPS) 180-2, Secure Hash
Standard (SHS) (affixed).

8. Implementations: The secure hash agorithms specified herein may be implemented in
software, firmware, hardware or any combination thereof. Only algorithm implementations that
are validated by NIST will be considered as complying with this standard. Information about the
planned validation program can be obtained at http://csrc.nist.gov/cryptval/ or from the National
Institute of Standards and Technology, Information Technology Laboratory, Attn: SHS
Validation, 100 Bureau Drive Stop 8930, Gaithersburg, MD 20899-8930.

9. Implementation Schedule: This standard becomes effective on February 1, 2003.

10. Patents: Implementations of the secure hash algorithms in this standard may be covered by
U.S. or foreign patents.

11. Export Control: Certain cryptographic devices and technical data regarding them are
subject to Federal export controls. Exports of cryptographic modules implementing this standard
and technical data regarding them must comply with these Federal regulations and be licensed by
the Bureau of Export Administration of the U.S. Department of Commerce. Applicable Federal
government export controls are specified in Title 15, Code of Federal Regulations (CFR) Part
740.17; Title 15, CFR Part 742; and Title 15, CFR Part 774, Category 5, Part 2.

12. Qualifications: While it is the intent of this standard to specify genera security
requirements for generating a message digest, conformance to this standard does not assure that a
particular implementation is secure. The responsible authority in each agency or department
shall assure that an overall implementation provides an acceptable level of security. This
standard will be reviewed every five years in order to assess its adequacy.

13. Waiver Procedure. Under certain exceptional circumstances, the heads of Federal
agencies, or their delegates, may approve waivers to Federal Information Processing Standards
(FIPS). The heads of such agencies may redelegate such authority only to a senior official
designated pursuant to Section 3506(b) of Title 44, U.S. Code. Waivers shall be granted only
when compliance with this standard would

a. adversely affect the accomplishment of the mission of an operator of a Federal computer
system or

b. cause a mgor adverse financial impact on the operator that is not offset by government-
wide savings.

Agency heads may act upon a written waiver request containing the information detailed above.
Agency heads may also act without a written waiver request when they determine that conditions
for meeting the standard cannot be met. Agency heads may approve waivers only by a written
decision that explains the basis on which the agency head made the required finding(s). A copy
of each such decision, with procurement sensitive or classified portions clearly identified, shall
be sent to: National Institute of Standards and Technology; ATTN: FIPS Waiver Decision,
Information Technology Laboratory, 100 Bureau Drive, Stop 8900, Gaithersburg, MD 20899-
8900.

In addition, a notice of each waiver granted and each delegation of authority to approve waivers
shal be sent promptly to the Committee on Government Operations of the House of
Representatives and the Committee on Government Affairs of the Senate and shall be published
promptly in the Federa Register.

When the determination on a waiver applies to the procurement of equipment and/or services, a
notice of the waiver determination must be published in the Commerce Business Daily as a part
of the notice of solicitation for offers of an acquisition or, if the waiver determination is made
after that notice is published, by amendment to such notice.

A oopy of the waiver, any supporting documents, the document approving the waiver and any
supporting and accompanying documents, with such deletions as the agency is authorized and
decides to make under Section 552(b) of Title 5, U.S. Code, shal be part of the procurement
documentation and retained by the agency.

14. Where to Obtain Copies of the Standard: This publication is available electronically by
accessing http://csre.nist.gov/publications/. A list of other available computer security
publications, including ordering information, can be obtained from NIST Publications List 91,
which is available at the same web site. Alternatively, copies of NIST computer security
publications are available from: National Technical Information Service (NTIS), 5285 Port
Roya Road, Springfield, VA 22161.

Federal Information
Processing Standar ds Publication 180-2

2002 August 1

Specificationsfor the

SECURE HASH STANDARD

Table Of Contents

INTRODUGCTION ..t e s e e 3

DEFINTTIONS ...ttt 4

2.1 GLOSSARY OF TERMSAND ACRONYMS.....ooiiiiteiietseescsesestesiessassessssssssssssssessassssssssssssstesssssssssssssssssassasssssessssssssssssnns
2.2 ALGORITHM PARAMETERS SYMBOLS AND TERMS
A R =111 1= (< =TT
A 1110 To | P U T TRTR

NOTATION AND CONVENTIONS ... s bbb 6

3.1 BIT STRINGSAND INTEGERS.......coteururtutserserestsesessesessssssesssesessestsssesssssssssssesssssessssesssesessssssessssssssessssesssssessessessssesssesens 6
3.2 OPERATIONS ON WORDS.......ccotueutueureresssessesesssesessesessssssesssssessesssssessssssssessesssssessssesssesesssssssssssssessssesssssessenssessssenssnsans 7

FUNCTIONS AND CONSTANTS ... b bbb 9

N R = N[[0 <R
I S 1N T 1 o]
4,12 SHA250 FUNCLIONS.....couieieicieistitcie ettt s st sttt s b s e s e s be s sbese e st e st sbe s b et ebe st ebssbe st ebe st ebesbe e ebe st esesbasesrnans
4.1.3 SHA-384 and SHA-512 Functions

R © 0) =1 17N N SRR
L R o 1 G0 = 6T
4.2.2 SHA-256 Constants
4.2.3 SHA-384 and SHA-512 Constants

PREPROCESSING ...t s bbb s s bbb 12

5.1 PADDING THEMESSAGE ...covvvveveeessssssssssssseessssssssssssseeesssssssssssseseessssssssssssssessssssssssssseessssssssssssssseesssssssssssoseesss
L RS o 1 = T a0 [1
5.1.2 SHA-384 and SHA-512

5.2 PARSING THE PADDED MESSAGEovvvvvvvreseresssssssssssssssssssssssssssssesssssssssssssssssssssssssssssssssseseessssssssssssssssssssssssseseee
5.2 1 SHACLANA SHAR2EB.........coceeeeecteeeeeteteeees et ee et e s ts e ssaebe s sestsssssss st ese e sssesenssestessasssssesesnsssssenssestensnnses
522 SHA-384 and SHA-512.......oeeeeteeeeeeeeeeete et

SETTING THE INITIAL HASH VALUE (H©)

6.1.1 SHA-1 Preprocessing
6.1.2 SHA-1 HaSh COMPULALION......ccveeereriierieirereseresesesessesessssssessssssssessssssssssssssssssssssssssesssssessssessssssssssssesssssnssnes 15
6.1.3 Alternate Method for Computing & SHA-1 MeSSage DigESL......ccururererrneerreeeneneirereererssesseesseesseeens 17

8.3 SHA-BL2. ...t
6.3.1 SHA-512 PreproCeSsSiNg.......ccreeereeeereeernieesseressessssersssessessssesesseseens
6.3.2 SHA-512 Hash Computation...........cuereeernerernersenerseersesesneeeneenns
B.4 SHA-3BA......oeeet ettt AR

APPENDIX A: SHA-LEXAMPLES ...t s s

A.1l SHA-1 EXAMPLE (ONE-BLOCK MESSAGE)ccvvveumreessesresssssessssssssssssssessssssesssssssessssssessssssssssssssssssssnansssssnseess
A.2 SHA-1 EXAMPLE (MULTI-BLOCK MESSAGE)
A.3 SHA-1 EXAMPLE (LONG MESSAGE)oorervrvemressssssessesssssssssssssesssssssssssssnassssssnsnees

APPENDIX B: SHA-256 EXAMPLES ... 33

B.1 SHA-256 EXAMPLE (ONE-BLOCK MESSAGE)cvuueeeeeeermrsrsssenesessessess s sssssssssssse e ssssssssssneens 33
B.2 SHA-256 EXAMPLE (MULTI-BLOCK MESSAGE)cuvtuerieereereesreessessssessssssesssesssssssssssssssssssssssssessssssssssssssssnssssns 35
B.3 SHA-256 EXAMPLE (LONG IMESSAGE)tueuutteeuerresersesessesessessesessessssssssssssssssessssessssessssssssssssssssssssessssesssssssssssnssssns 40

APPENDIX C: SHA-512 EXAMPLES ... s 41

C.1 SHA-512 EXAMPLE (ONE-BLOCK MESSAGE)cc.vvvuurreseerssesseesssssssssssssessssssssesssssssesssssssesssssssssssssesssssssessses
C.2 SHA-512 EXAMPLE (MULTI-BLOCK MESSAGE)
C.3 SHA-512 EXAMPLE (LONG MESSAGE).........rveeueesessaessessaenssssssesssssssssssssssssssssssessns

APPENDIX D: SHA -384 EXAMPLES ..ot 56

D.1 SHA-384 EXAMPLE (ONE-BLOCK MESSAGE)urvvueresseaeeessssessssssnesssssessssssssesssssssssssssssssssssssssssnsssssssnssessens 56
D.2 SHA-384 EXAMPLE (MULTI-BLOCK MESSAGE)ooerevuemnesssssessssssesssssssssssssssssssssesssssnsssssssssssssssnsssssssnsssssens 61
D.3 SHA-384 EXAMPLE (LONG MESSAGE)orvsvuumsessssesssssssessssssessssssesssssssssssssssssssssssssssssessssssssssssssnsssssssnssssssns 70

APPENDIX E: REFERENCES. ... s s bbb s 71

1. INTRODUCTION

This standard specifies four secure hash algorithms, SHA-1*, SHA-256, SHA-384, and SHA-
512. All four of the algorithms are iterative, one-way hash functions that can process a message
to produce a condensed representation called a message digest. These algorithms enable the
determination of a message’'s integrity: any change to the message will, with a very high
probability, result in a different message digest. This property is useful in the generation and
verification of digital signatures and message authentication codes, and in the generation of
random numbers (bits).

Each algorithm can be described in two stages. preprocessing and hash computation.
Preprocessing involves padding a message, parsing the padded message into m-bit blocks, and
setting initialization values to be used in the hash computation. The hash computation generates
a message schedule from the padded message and uses that schedule, aong with functions,
constants, and word operations to iteratively generate a series of hash values. The final hash
value generated by the hash computation is used to determine the message digest.

The four algorithms differ most significantly in the number of bits of security that are provided
for the data being hashed — this is directly related to the message digest length. When a secure
hash agorithm is used in conjunction with another algorithm, there may be requirements
specified elsewhere that require the use of a secure hash agorithm with a certain number of bits
of security. For example, if a message is being signed with a digital signature algorithm that
provides 128 bits of security, then that signature algorithm may require the use of a secure hash
algorithm that also provides 128 bits of security (e.g., SHA-256).

Additionally, the four algorithms differ in terms of the size of the blocks and words of data that
are used during hashing. Figure 1 presents the basic properties of all four secure hash
algorithms.

Algorithm MessageSize Block Sze Word Size Message Digest Size Security?

(bits) (bits) (bits) (bits) (bits)
SHA-1 < 2% 512 32 160 80
SHA-256 < 2% 512 32 256 128
SHA-384 < 2% 1024 64 384 192
SHA-512 <2 1024 64 512 256

Figure 1: Secure Hash Algorithm Properties

! The SHA-1 algorithm specified in this document isidentical to the SHA -1 algorithm specified in FIPS 180-1 [180-
1]. However, this specification, FIPS 180-2, uses ROTL"(X) instead of S' (X) [180-1] to denote “circular left shift
by n bits’ (i.e., “left rotation by n bits’). Thisis described in Sec. 3.2. Some other notational changes have been
made in order to be consistent with the specifications for SHA -256, SHA -384, and SHA -512.

2 In this context, “security” refers to the fact that a birthday attack [HAC] on a message digest of size n produces a
collision with aworkfactor of approxmately 22,

2. DEFINITIONS

2.1 Glossary of Terms and Acronyms

Bit
Byte
FIPS

Word

A binary digit having avalue of O or 1.
A group of eight bits.
Federal Information Processing Standard.

A group of either 32 bits (4 bytes) or 64 bits (8 bytes), depending on the
secure hash agorithm.

2.2 Algorithm Parameters, Symbols, and Terms

221 Parameters
The following parameters are used in the secure hash agorithm specifications in this standard.

a, b,c ...,h Working variablesthat are the w-bit words used in the computation of the

H®

HO

]

Kt

k

hash values, HO,

The it hash vaue. H? isthe initial hash value; H™ isthe final hash vaue
and is used to determine the message digest.

Thej™ word of the i hash value, where H " is the left-most word of hash
valuei.

Constant value to be used for iteration t of the hash computation.
Number of zeroes appended to a message during the padding step.
Length of the message, M, in hits.

Number of bits in a message block, M.

Message to be hashed.

Message block i, with a size of m bits.

The ™ word of the i message block, where M is the left-most word of
message block i.

w
W

2.2.2 Symbols

Number of bits to be rotated or shifted when a word is operated upon.
Number of blocks in the padded message.

Temporary w-bit word used in the hash computation.

Number of bitsin aword.

The t*" w-bit word of the message schedule.

The following symbols are used in the secure hash algorithm specifications, and each operates on

w-hit words.

U

U

<<

>>

Bitwise AND operation.

Bitwise OR (“inclusive-OR”) operation.
Bitwise XOR (“exclusive-OR”) operation.
Bitwise complement operation.

Addition modulo 2".

L eft-shift operation, where x << n is obtained by discarding the left-most n
bits of the word x and then padding the result with n zeroes on the right.

Right-shift operation, where x >> n is obtained by discarding the right-
most n bits of the word x and then padding the result with n zeroes on the
| eft.

3.

3.1

NOTATION AND CONVENTIONS

Bit Strings and Integers

The following terminology related to bit strings and integers will be used.

1. A hexdigit isan element of theset {0, 1,.., 9, a, .., f}. A hexdigitisthe

representation of a 4-bit string. For example, the hex digit “7” represents the 4bit
string “0111”, and the hex digit “a” represents the 4-bit string “1010".

. A word is a w-hit string that may be represented as a sequence of hex digits. To

convert a word to hex digits, each 4-bit string is converted to its hex digit equivalent,
as described in (1) above. For example, the 32-bit string

1010 0001 0000 0011 1111 1110 0010 0011
can be expressed as “a103f e23”, and the 64-hit string

1010 0001 0000 0011 1111 1110 0010 0OO1l1
0011 0010 1110 1111 0011 OOOO 0001 1010

can be expressed as “al103f e2332ef 301a”.
Throughout this specification, the “ big-endian” convention is used when expressing

both 32- and 64-bit words, so that within each word, the most significant bit is stored
in the left-most bit position.

. Aninteger may be represented as a word or pair of words. A word representation of

the message length, 7, in hits, isrequired for the padding techniques of Sec. 5.1.

An integer between 0 and 2°2-1 inclusive may be represented as a 32-bit word. The
least significant four bits of the integer are represented by the right-most hex digit of
the word representation. For example, the integer 291 = 2% + 2° + 21 + 20 =
256+32+2+1 is represented by the hex word 00000123.

The same holds true for an integer between 0 and 2*-1 inclusive, which may be
represented as a 64-bit word.

If Zisaninteger, 0 £ Z< 2% thenZ=2%X +Y, where 0 £ X<2*and 0 £ Y< 2%,
Since X and Y can be represented as 32-bit words x and y, respectively, the integer Z
can be represented as the pair of words (x, y). This property is used for SHA-1 and
SHA-256.

If Zisaninteger, 0 £ Z< 2% thenZ=2%*X +Y, where0 £ X <2®**and 0 £ Y< 2%
Since X and Y can be represented as 64-bit words x and y, respectively, the integer Z
can be represented as the pair of words (X, y). This property is used for SHA-384 and
SHA-512.

4. For the secure hash agorithms, the size of the message block - m bits- depends on the
algorithm.

a) For SHA-1 and SHA-256, each message block has 512 bits, which are
represented as a sequence of sixteen 32-bit words.

b) For SHA-384 and SHA-512, each message block has 1024 bits, which are
represented as a sequence of sixteen 64-bit words.

3.2 Operations on Words
The following operations are applied to w-bit words in all four secure hash algorithms. SHA-1

and SHA-256 operate on 32-bit words (W = 32), and SHA-384 and SHA-512 operate on 64-bit
words (w = 64).
1. Bitwiselogical word operations. U, U, A, and w (see Sec. 2.2.2).
2. Addition modulo 2.
The operation x +y is defined as follows. The words x and y represent integers X and
Y, where0 £ X<2"and 0 £ Y< 2". For positive integers U and V, let U modV be
the remainder upon dividing U by V. Compute
Z=(X+Y)mod 2"
Then0 £ Z<2". Convert theinteger Z to aword, z and definez=x +.

3. Theright shift operation SHR "(x), where x is a w-bit word and n is an integer with 0
£ n<w, isdefined by

HR"(X) =x >>n.
This operation is used in the SHA-256, SHA-384, and SHA-512 algorithms.

4. The rotate right (circular right shift) operation ROTR "(x), where x is a w-hit word
and n isan integer with 0 £ n <w, isdefined by

ROTR"(X) = (x>>n) U (X << w- n).

Thus, ROTR"(x) is equivalent to a circular shift (rotation) of x by n positions to the
right.

This operation is used by the SHA-256, SHA-384, and SHA-512 algorithms.

5. Therotate left (circular left shift) operation, ROTL "(x), where x isaw-bit word and n
isan integer with 0 £ n < w, isdefined by

ROTL"(X) =(x <<n) U (x >>w- n).

Thus, ROTL "(x) is equivalent to a circular shift (rotation) of x by n positions to the
| eft.

This operation is used only in the SHA-1 algorithm. Note that in Ref. [180-1] this
operation was referred to as “S"(X)”; however, the notation has been modified for
clarity and consistency with the notation used for operations in the other secure hash
algorithms.

6. Note the following equiva ence relationships, where w is fixed in each relationship:

ROTL "(x) » ROTR""(x)

ROTR"(X) » ROTL “"(x).

4. FUNCTIONS AND CONSTANTS

4.1 Functions

This section defines the functions that are used by each of the algorithms. Although the SHA-
256, SHA-384, and SHA-512 agorithms all use similar functions, their descriptions are
separated into sections for SHA-256 (Sec. 4.1.2) and for SHA-384 and SHA-512 (Sec. 4.1.3),
since the input and output for these functions are words of different sizes. Each of the algorithms
include Ch(x, y, 2) and Maj(x, y, 2) functions; the exclusive-OR operation (A) in these functions
may be replaced by a bitwise OR operation (U) and produce identical results.

41.1 SHA-1 Functions

SHA-1 uses a sequence of logical functions, fo, fi,..., fzo. Each function f;, where 0 £ t < 79,
operates on three 32-bit words, X, y, and z, and produces a 32-bit word as output. The function f;
(X, Y, 2) is defined as follows:

~ Ch(x,y, 2 =(xUy) A (uxuUz) O£t£19
Parity(x,y,2=x A y A z 20£t£ 39

fix,y, 2= < (4.1)
Maj(x,y,2) = (xUy) A (xUz) A (yuz) 40£t£59

(_ Parity(x,y,2=xA y A z 60 £t £ 79.

41.2 SHA-256 Functions

SHA-256 uses six logical functions, where each function operates on 32-bit words, which are
represented as X, y, and z. The result of each function is a new 32-bit word.

Cch(xy.2) = (xUy)A @xU2) (4.2)
Maj(x,y,z) = (xUy)A(xUz)A (yUz) (43)
1770 = ROTRM A ROTRE(Y) A ROTRZ() (44)
A7 (0 = ROTRx) A ROTRY(x) A ROTR®(x) (49)
s®¥(x) = ROTR(x) A ROTR¥®x) A SHR3) (4.6)
sf*(x) = ROTRY(x) A ROTR®(x) A SHR™() 47

41.3 SHA-384 and SHA-512 Functions

SHA-384 and SHA-512 each use six logical functions, where each function operates on 64-bit
words, which are represented as x, y, and z. The result of each function is a new 64-bit word.

Ch(x,y,z) = (xUy)A (@xUz) (4.8)

Maj(x,y,z2) = (xUy)A(xUz2)A (yUz) (4.9
A’ (x) = ROTR®(x) A ROTR¥(x) A ROTR¥(x) (4.10)
A7 = ROTR¥x) A ROTR™¥(x) A ROTR™(x) (4.12)
s (x) = ROTR'(x) A ROTR}x) A SHR'(x) (4.12)
s¥%(x) = ROTRY¥(x) A ROTR*(x) A SHR®(x) (4.13)

4.2 Constants

421 SHA-1 Constants
SHA-1 uses a sequence of eighty constant 32-bit words, Ko, Ki,..., K79, which are given by

~ 5a827999 O£t£19
6ed9ebal 20£t£39
Ke =< (4.14)
8f 1bbcdc 40 £ t £ 59
_ cab62cld6 60 £t £ 79.

422 SHA-256 Constants

SHA-256 uses a sequence of sixty-four constant 32-hit words, K%, K{»% K2 = These

words represent the first thirty-two bits of the fractional parts of the cube roots of the first sixty-
four prime numbers. In hex, these constant words are (from left to right)

428a2f 98 71374491 b5cOf bcf e9b5dba5 3956¢25b 59f 111f 1 923f 82a4 ablc5edb
d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deblfe 9bdc06a7 c19bf 174
e49b69c1l ef be4786 0f c19dc6 240calcc 2de92c6f 4a7484aa 5cb0a9dc 76f 988da
983e5152 aB831c66d b00327c8 bf597fc7 c6e00bf3 d5a79147 06ca6351 14292967
27b70a85 2e1b2138 4d2c6dfc 53380d13 650a7354 766a0abb 81c2c92e 92722c85
a2bf e8al a8la664b c24b8b70 c76c51a3 d192e819 d6990624 f 40e3585 106aa070
19a4c116 1e376¢c08 2748774c 34bObcb5 391cOcb3 4ed8aad4a 5b9ccadf 682e6ff3
748f 82ee 78a5636f 84c87814 8cc70208 90befffa a4506ceb bef9a3f7 c67178f 2.

42.3 SHA-384 and SHA-512 Constants
SHA-384 and SHA-512 use the same sequence of eighty constant 64-bit words,
K3 K3 KEP | These words represent the first sixty-four bits of the fractional parts of

the cube roots of the first eighty prime numbers. In hex, these constant words are (from left to
right)

428a2f 98d728ae22 7137449123ef 65cd b5cOf bcf ec4d3b2f e9b5dba58189dbbc
3956c25bf 348b538 59f 111f 1b605d019 923f 82a4af 194f 9b ablc5ed5da6d8118
d807aa98a3030242 12835b0145706f be 243185bedeed4b28c 550c7dc3d5f f b4e2

10

72be5d74f 27b896f
e49b69c19ef 14ad2
2de92c¢6f 592b0275
983e5152ee66df ab
c6e00bf 33da88fc2
27b70a8546d22f f c
650a73548baf 63de
a2bf e8al4cf 10364
d192e819d6ef 5218
19a4c¢116b8d2d0c8
391c0ch3c5¢c95a63
748f 82ee5def b2f ¢
90bef f f a23631e28
ca273eceea26619c
06f 067aa72176f ba
28db77f 523047d84
4cc5d4bech3e42b6

80debl1f e3b1696b1
ef be4786384f 25e3
4a7484aa6eabe483
a831c66d2db43210
d5a79147930aa725
2e1b21385c26¢c926
766a0abb3c77b2a8
a8la664bbc423001
d69906245565a910
1e376¢c085141ab53
4edB8aad4ae3418ach
78a5636f 43172f 60
a4506cebde82bde9
d186b8c721c0c207
0a637dc5a2c898a6
32caab7b40c72493
597f 299cf c657e2a

9bdc06a725c71235
0f c19dc68b8cd5b5
5cb0a9dcbd41f bd4
b00327c898f b213f
06ca6351e003826f
4d2c6df c5ac42aed
81c2c92e47edaeeb
c24b8b70d0f 89791
f 40e35855771202a
2748774cdf 8eeb99
5b9cca4f 7763e373
84c87814alf 0ab72
bef 9a3f 7b2c67915
eada7dd6cdeOeble
113f 9804bef 90dae
3c9ebelal5c9bebc
5f cb6f ab3ad6f aec

11

c19bf 174cf 692694
240calcc77ac9c65
76f 988da831153b5
bf 597f c7beef Oee4d
142929670a0e6e70
53380d139d95b3df
92722c851482353b
€c76c51a30654be30
106aa07032bbd1b8
34b0bch5e19b48a8
682e6f f 3d6b2b8a3
8cc702081a6439ec
c67178f 2e372532b
f 57d4f 7f ee6ed178
1b710b35131c471b
431d67c49c100d4c
6c44198c4a475817.

5. PREPROCESSING

Preprocessing shall take place before hash computation begins. This preprocessing consists of
three steps: padding the message, M (Sec. 5.1), parsing the padded message into message blocks
(Sec. 5.2), and setting the initial hash value, H® (Sec. 5.3).

5.1 Padding the Message

The message, M, shall be padded before hash computation begins. The purpose of this padding
is to ensure that the padded message is a multiple of 512 or 1024 bits, depending on the
algorithm.

51.1 SHA-1and SHA-256

Suppose that the length of the message, M, is ¢ bits. Append the bit “1” to the end of the
message, followed by k zero hits, where k is the smallest, non-negative solution to the equation
/+1+k° 448mod512. Then append the 64-bit block that is equal to the number ¢ expressed
using a binary representation. For example, the (8-bit ASCII) message “abc” has length
8" 3 =24, so the message is padded with aone bit, then 448- (24 +1) = 423 zero hits, and then
the message length, to become the 512-bit padded message

423 64

r—’%r—’%

01100001 01100010 01100011 1 00..00 00..011000 .

[

“a’ “b” “c” (=24

The length of the padded message should now be a multiple of 512 bits.

5.1.2 SHA-384 and SHA-512

Suppose the ength of the message M, in bits, is ¢ bits. Append the bit “1” to the end of the
message, followed by k zero bits, where k is the smallest non-negative solution to the equation
/+1+Kk © 896mod1024. Then append the 128-bit block thet is equal to the number ¢ expressed
using a binary representation. For example, the (8-bit ASCII) message “abc” has length
8" 3=24, so the message is padded with a one bit, then 896 - (24 +1) =871 zero hits, and then
the message length, to become the 1024-bit padded message

871 128

—— /Y

01100001 01100010 01100011 1 00..00 00..011000.

%/_J

“‘a’ “b” “c” (=24

The length of the padded message should now be a multiple of 1024 bits.

12

5.2 Parsing the Padded Message

After a message has been padded, it must be parsed into N m-bit blocks before the hash
computation can begin.

52.1 SHA-1and SHA-256

For SHA-1 and SHA-256, the padded message is parsed into N 512-bit blocks, M®, M@ .|
MM Since the 512 bits of the input block may be expressed as sixteen 32-bit words, the first 32

bits of message block i are denoted M ", the next 32 bitsare M{" , andsoonupto MP .

5.2.2 SHA-384 and SHA-512

For SHA-384 and SHA-512, the padded message is parsed into N 1024-bit blocks, M®, M@ ...,
M®™. Since the 1024 bits of the input block may be expressed as sixteen 64-bit words, the first 64
bits of message block i are denoted M ", the next 64 bitsare M" , andsoonupto M .

5.3 Setting the Initial Hash Value (H?)

Before hash computation begins for each of the secure hash algorithms, the initial hash value,
H©, must be set. The size and number of wordsin H® depends on the message digest size.

5.3.1 SHA-1
For SHA-1, the initial hash value, H®, shall consist of the following five 32-bit words, in hex:

H® = 67452301
H©® = efcdab89
H® = 98badcfe
H® = 10325476
H® = c¢3d2elfo.

5.3.2 SHA-256

For SHA-256, the initia hash value, H®, shall consist of the following eight 32-bit words, in
hex:

H® = 6a09e667
H©® = bb67ae85
H® = 3c6ef 372
HO® = a54ff53a
H® = 510e527f
H® = 9b05688c
H® = 1f83d9ab
H{® = 5be0cd19.

13

These words were obtained by taking the first thirty-two bits of the fractional parts of the square
roots of the first eight prime numbers.

533 SHA-384

For SHA-384, the initia hash value, H®, shall onsist of the following eight 64-bit words, in
hex:

H{” = cbbb9d5dc1059ed8
H® = 629a292a367cd507
H® = 9159015a3070dd17
H® = 152f ecd8f 70e5939
H® = 67332667ffc00b31
H® = 8eb44a8768581511
H® = db0c2e0d64f 98f a7
H® = 47b5481dbef a4f a4.

These words were obtained by taking the first sixty-four bits of the fractional parts of the square
roots of the ninth through sixteenth prime numbers.

534 SHA-512

For SHA-512, the initia hash value, H®, shall consist of the following eight 64-bit words, in
hex:

H® = 6a09e667f 3bcc908
H©® = bb67ae8584caa73b
H{ = 3c6ef 372f e94f 82b
H® = a54ff53a5f 1d36f 1
Hjo’ = 510e527f ade682d1
Héo) = 9b05688c2b3eb6elf
Héo’ = 1f 83d9abf b41bd6b
H® = 5be0cd19137e2179.

These words were obtained by taking the first sixty-four bits of the fractional parts of the square
roots of the first eight prime numbers.

14

6. SECURE HASH ALGORITHMS

In the following sections, SHA-512 is described before SHA-384. That is because the SHA-384
algorithm is identical to SHA-512, with the exception of using a different initial hash value and
truncating the final hash value to 384 bits.

For each of the secure hash agorithms, there may exist aternate computation methods that yield
idertical results; one example is the aternative SHA-1 computation described in Sec. 6.1.3.
Such aternate methods may be implemented in conformance to this standard.

6.1 SHA-1

SHA-1 may be used to hash a message, M, having a length of /¢ bits, where 0 £ ¢ <2%. The
algorithm uses 1) a message schedule of eighty 32-bit words, 2) five working variables of 32 bits
each, and 3) a hash value of five 32-bit words. The fina result of SHA-1 is a 160-bit message
digest.

The words of the message schedule are labeled Wo, WA, ..., Wrg. The five working variables are
labeled a, b, ¢, d, and e. The words of the hash value are labeled H",H{",...,H{, which will

hold the initial hash value, H, replaced by each successive intermediate hash value (after each
message block is processed), H", and ending with the final hash value, H™. SHA-1 also uses a
single temporary word, T.

Appendix A gives several detailed examples of SHA-1.

6.1.1 SHA-1Preprocessing

1. Pad the message, M, according to Sec. 5.1.1;

2. Parse the padded message into N 512-bit message blocks, MY, M@, ..., MM,
according to Sec. 5.2.1; and

3. Set theinitial hash value, H, as specified in Sec. 5.3.1.

6.1.2 SHA-1 Hash Computation

The SHA-1 hash computation uses functions and constants previously defined in Sec. 4.1.1 and
Sec. 4.2.1, respectively. Addition (+) is performed modulo 232,

After preprocessing is completed, each message block, MM, M@, ..., M is processed in order,
using the following steps:

Fori=1toN:

{
1. Prepare the message schedule, { W} :

15

M® 0£t£15

ROTLY (W, , AW, AW _, AW) 16EtE£T9
2. Initialize the five working variables, a, b, ¢, d, and e, with the (i-1)* hash value:

a=H{?
b= H{™
c=H{?
d=H(

o= H{™

3. Fort=0to79:

{
T = ROTL’(a) + f,(b,c,d) +e+ K, +W,
e=d
d=c
¢ = ROTL¥(b)
b=a
a=T
}

4. Compute the i intermediate hash value H®:

HO =a+HD
HO =b+H(
HO =c+H(Y
HO =d+HI
HO =e+HEY
}

After repeating steps one through four atotal of N times (i.e., after processing M™), the resulting
160-bit message digest of the message, M, is

G L

16

6.1.3 Alternate Method for Computing a SHA-1 Message Digest

The SHA-1 hash computation method described in Sec. 6.1.2 assumes that the message schedule
Wo, Wi,..., Wy is implemented as an array of eighty 32-bit words. This is efficient from the
standpoint of the minimization of execution time, since the addresses of W3, ..., Wi.16 in step (2)
of Sec. 6.1.2 are easily computed.

However, if memory is limited, an aternative is to regard {W} as a circular queue that may be
implemented using an array of sixteen 32-bit words, Wo, Wa,..., Wis. The aternate method that is
described in this section yields the same message digest as the SHA-1 computation method
described in Sec. 6.1.2. Although this alternate method saves sixty-four 32-bit words of storage,
it is likely to lengthen the execution time due to the increased complexity of the address
computations for the {W} in step (3).

For this alternate SHA-1 method, let MASK = 0000000f (in hex). Asin Sec. 6.1.1, addition is
performed modulo 2*2. Assuming that the preprocessing as described in Sec. 6.1.1 has been
performed, the processing of M is as follows:

Fori=1toN:
{
1. Fort=0to15:
{ .
W =MO
}

2. Initidize the five working variables, a, b, ¢, d, and e, with the (i-1)% hash value:

a=H{?
b=H{?
C=H{Y
d=H{?

e= H{™

3. Fort=0to 79:

{
s=tUMAX

If t3 16then

{
W = ROTLl(VV(s+13)UMASK A Vv(s+8)UMASK A VV(5+2)UMASK A VVs)

17

4. Compute the i*" intermediate hash value H®:

HO =a+H(

HO =b+H(
HO =c+H(Y
HO =d+HU

HO =e+HEY

}

After repeating steps one through four atotal of N times (i.e., after processing M™), the resulting
160-bit message digest of the message, M, is

T

6.2 SHA-256

SHA-256 may be used to hash a message, M, having a length of ¢ bits, where 0 £ ¢ < 2% . The
algorithm uses 1) a message schedule of sixty-four 32-bit words, 2) eight working variables of 32
bits each, and 3) a hash value of eight 32-bit words. The final result of SHA-256 is a 256-bit
message digest.

The words of the message schedule are labeled W, Wa,..., Wess. The eight working variables are
labeled &, b, ¢, d, e, f, g, and h. The words of the hash value are labeled H® ,H® ... H®,

which will hold the initial hash value, H?, replaced by each successive intermediate hash value
(after each message block is processed), H", and ending with the final hash value, H™. SHA-
256 also uses two temporary words, T1 and To.

Appendix B gves several detailed examples of SHA-256.

18

6.2.1 SHA-256 Preprocessing

1. Pad the message, M, according to Sec. 5.1.1;

2. Parse the padded message into N 512-bit message blocks, MY, M@, ..., MM,
according to Sec. 5.2.1; and

3. Set theinitial hash value, H, as specified in Sec. 5.3.2.

6.2.2 SHA-256 Hash Computation

The SHA-256 hash computation uses functions and constants previously defined in Sec. 4.1.2
and Sec. 4.2.2, respectively. Addition (+) is performed modulo 2°2.

After preprocessing is completed, each message block, MM, M@, ..., M is processed in order,
using the following steps:

Fori=1toN:
{

1. Prepare the message schedule, { W} :
M® O£t £15
\/\/t =
S0 W) Wy +5 50 W i5) + W, 16E£LE63

2. Initidize the eight working variables, a, b, ¢, d, e, f, g, and h, with the (-1)% hash
value:

a=H{
b= H{"?
C=H
d = H{
e= H{?
fzHe
g=H™
h=H{

3. Fort=0to63:
{

19

o {256}

T,=h+§ . (e +Ch(e f,g)+ K +W,
T, =& @)+ Maj(ab,c)

h=g

g="f

f=e

e=d+T,

d=c

c=b

b=a

a=T,+T,

}
4. Computethe i intermediate hash value HO:

HO =a+ HD

HO =b+H(
HO = c+H
HO =d+H
HO = e+ H
HO = f+HED
HY = gehl
HO =h+HD

}

After repeating steps one through four atotal of N times (i.e., after processing M™), the resulting
256-bit message digest of the message, M, is

T

6.3 SHA-512

SHA-512 may be used to hash a message, M, having a length of ¢ bits, where 0 £ ¢ < 2'*®. The
algorithm uses 1) a message schedule of eighty 64-bit words, 2) eight working variables of 64
bits each, and 3) a hash value of eight 64-bit words. The fina result of SHA-512 is a 512-bit
message digest.

The words of the message schedule are labeled Wo, Wa,..., Wr. The eight working variables are
labeled a, b, c, d, e f, g, and h. The words of the hash value are labeled H),H" ..., HY,
which will hold the initial hash value, H®, replaced by each successive intermediate hash value

20

(after each message block is processed), H, and ending with the final hash value, H™. SHA-
512 aso uses two temporary words, T; and To.

Appendix C gives severa detailed examples of SHA-512.

6.3.1 SHA-512 Preprocessing

1. Pad the message, M, according to Sec. 5.1.2;

2. Parse the padded message into N 1024-bit message blocks, M®, M@, ... MM,
according to Sec. 5.2.2; and

3. Set theinitial hash value, H?, as specified in Sec. 5.3.4.

6.3.2 SHA-512 Hash Computation

The SHA-512 hash computation uses functions and constants previously defined in Sec. 4.1.3
and Sec. 4.2.3, respectively. Addition (+) is performed modulo 2%,

After preprocessing is completed, each message block, M M@ ... MM isprocessed in order,
using the following steps:

Fori=1toN:

{
1. Prepare the message schedule, { W} :

M® 0£t£15

sBPAW)+W_, +sPR W L)+W, . 16E£t£79

2. Initialize the eight working \eriables, a, b, ¢, d, e, f, g, and h, with the (-1)% hash
value:

a=H{™
b= H{"
c=H{?
d=H{
o= H{?
f=HED
g=H¢™
h=H{

3. Fort=0to 79:

21

T,=h+§ (@ +Chie f,g)+ K2 +W,
T,= 4. (a) +Maj(a,b,c)

h=g

g="f

f=e

e=d+T,

d=c

c=b

b=a

a=T,+T,

4. Compute the i intermediate hash value H®:

() — (-1
Ho' =a+H,

HO =b+H(
HO =c+H
HO =d+H{
HO = e+ HY
HO = f+HED
HO =g Hi™
HO =h+HD

}

After repeating steps one through four atotal of N times (i.e., after processing M), the resulting
512-bit message digest of the message, M, is

e

6.4 SHA-384

SHA-384 may be used to hash a message, M, having a length of ¢ bits, where 0 £ ¢ < 2'*®. The
algorithm is defined in the exact same manner as SHA-512 (Sec. 6.3), with the following two
exceptions:

1. Theinitia hash value, H®, shall be set as specified in Sec. 5.3.3; and

22

2. The 384-bit message digest is obtained by truncating the final hash value, H™, to its
left- most 384 hits:
N N N N N N
Ho RIS HE RS

Appendix D gives severa detailed examples of SHA-384.

23

24

APPENDIX A: SHA-1 EXAMPLES

This appendix is for informationa purposes only and is not required to meet the standard.

A.l SHA-1 Example (One-Block Message)

Let the message, M, be the 24-bit (/= 24) ASCII string "abc”, which is equivalent to the
following binary string:

01100001 01100010 01100011.

The message is padded by appending a 1" bit, followed by 423 '0" bits, and ending with the
hex value 00000000 00000018 (the two 32-bit word representation of the length, 24). Thus,
the final padded message consists of one block (N = 1).

For SHA-1, the initial hash value, H?, is

H{® = 67452301
H® = ef cdab89
H” = 98badcf e
H{® = 10325476
H® = c3d2elfO0.

The words of the padded message block are then assigned to the words W,...,Wis of the message
schedule:

Wo = 61626380 Wz = 00000000
W; = 00000000 Wy = 00000000
W, = 00000000 W = 00000000
Ws; = 00000000 W;; = 00000000
W, = 00000000 W, = 00000000
Ws = 00000000 Wz = 00000000
Ws = 00000000 Wy = 00000000
W; = 00000000 W;s = 00000018.

The following schedule shows the hex values for a, b, ¢, d, and e after passt of the “for t =0to
79" loop described in Sec. 6.1.2, step 4.

a b C d e
t= 0: 0116f ¢33 67452301 7bf 36ae2 98badcf e 10325476
t= 1: 8990536d 0116fc33 59d148¢c0 7bf 36ae2 98badcf e
t= 2: a1390f 08 8990536d c045bf Oc 59d148¢c0 7bf 36ae2

25

~ ~ ~+ ~ ~ ~ ~ ~ ~+ ~ ~+ ~ ~ ~ ~+ ~ ~+ ~ ~ ~ ~+ ~ ~+ ~ ~ ~ ~ ~ ~+ ~ ~ ~ ~+ ~ ~+ ~ ~+ ~ ~ ~ ~+ ~ ~+ ~ ~ ~ ~+ ~ ~ ~ ~ ~ ~ ~ ~ ~

©O©oo~NO UL bhWw

N BPRRRRERRRRE R
REEERNEEREREREDB

BNERRE

GRS

28558 S

ELFHRLE S

R

SREE88Y8HRBBREY

cdd8ellb
cf d499de
3f c7ca40
993e30c1
9e8c07d4
4b6ae328
8351f 929
f bda9e89
63188f e4
4607b664
9128f 695
196bee77
20bdd62f
4925823
82aa6728
dc64901d
f d9eld7d
1a37b0ca
33a23bfc
21283486
d541f 12d
c7567dc6
48413ba4
be35f bd5
4a2a84d97
8370b52e
c¢5f baf 5d
1267b407
3b845d33
046f aal0a
2cOebcll
21796ad4
dcbbbOcb
0f 511fd8
dc63973f
4¢986405
32delcbha
f c87dedf
970a0d5c¢c
7f 193dc5
eelblaaf
40f 28e09
1c5lelf 2
a01b846¢c
bead02ca
baf 39337
120731c5
641db2ce
3847ad66
e490436d
27e9f 1d8
7b71f 76d
5e6456af
c846093f
d262f f 50
09d785fd

al390f 08
cdd8ellb
cf d499de
3fc7ca40
993e30c1
9e8c07d4
4b6ae328
8351f 929
f bda9e89
63188f e4
4607b664
9128f 695
196bee77
20bdd62f
4e925823
82aa6728
dc64901d
f d9eld7d
1a37b0ca
33a23bfc
21283486
d541f 12d
c7567dc6
48413ba4
be35f bd5
4a2a84d97
8370b52e
c5f baf 5d
1267b407
3b845d33
046f aala
2cOebcll
21796ad4
dcbbbOcb
0f 511fd8
dc63973f
4c986405
32delcba
f c87dedf
970a0d5c
7f 193dc5
eelblaaf
40f 28e09
1c5lelf 2
a0l1b846¢c
bead02ca
baf 39337
120731c5
641db2ce
3847ad66
e490436d
27e9f 1d8
7b71f 76d
5e6456af
c846093f
d262f f 50

26

626414db
284e43c?2
f 3763846
b3f 52677
of f 1f 290
664f 8¢30
27a301f 5
12dab8ca
60d47e4a
7ef 6a7a2
18¢c623f 9
1181ed99
644a3dab
c65af bad
c82f 758b
d3a49608
20aa99ca
77192407
7f 67875f
868dec32
Oce88ef f
884a0d21
75507c4b
b1d59f 71
12104ee9
6f 8d7ef 5
d2aal365
a0dc2d4b
717eebd7
c499ed01
ceell74c
811bea82
4b03af 04
085e5ab5s
f 72eec32
03d447t 6
f 718e5cf
53261901
8cb7872e
ff21f 7b7
25c28357
5fc64f 71
f b86c6ab
503ca382
8714787c
2806e11lb
af ab40b2
eebce4cd
4481cc71
99076¢cb3
8elleb59
792410db
09f a7c76
5edc7ddb
d79915ab
f211824f

c045bf Oc
626414db
284e43c?2
f 3763846
b3f 52677
of f 1f 290
664f 8¢30
27a301f5
12dab8ca
60d47e4a
7ef 6a7a2
18¢c623f 9
1181ed99
644a3dab
c65af bad
c82f 758b
d3a49608
20aa99ca
77192407
7f 67875f
868dec32
Oce88ef f
884a0d21
75507c4b
b1d59f 71
12104ee9
6f 8d7ef 5
d2aal365
a0dc2d4b
717eebd7
c499ed01
ceell74c
811bea82
4b03af 04
085e5ab5
f 72eec32
03d447f 6
f 718e5cf
53261901
8ch7872e
ff21f 7b7
25c28357
5f c64f 71
f b86c6ab
503ca382
8714787c
2806e11lb
af ab40b2
eebcedcd
4481cc71
99076¢ch3
8elleb59
792410db
09f a7c76
5edc7ddb
d79915ab

59d148c0
c045bf Oc
626414db
284e43c?2
f 3763846
b3f 52677
of f 1f 290
664f 8¢30
27a301f5
12dab8ca
60d47e4a
7ef 6a7a2
18¢623f 9
1181ed99
644a3dab
c65af bod
c82f 758b
d3a49608
20aa99ca
77192407
7f 67875f
868dec32
Oce88ef f
884a0d21
75507c4b
b1d59f 71
12104ee9
6f 8d7ef 5
d2aal365
a0dc2d4b
717eebd7
c499ed01
ceell74c
811bea82
4b03af 04
085e5ab5
f 72eec32
03d447f 6
f 718e5¢cf
53261901
8cbh7872e
ff21f 7b7
25c28357
5fc64f 71
f b86c6ab
503ca382
8714787c
2806e11b
af ab40b2
eebce4cd
4481cc71
99076¢ch3
8elleb59
792410db
09f a7¢c76
5edc7ddb

59 : 3f 52deba 09d785fd 3498bf d4 f211824f d79915ab

t =

t = 60 : d756¢147 3f 52deba 4275el7f 3498bf d4 f 211824f
t = 61: 548c9ch2 d756c¢147 8f d4b796 4275el7f 3498bf d4
t = 62 : b66c020b 548c9ch2 f 5d5b051 8f d4b796 4275el7f
t = 63: 6b61c9el b66c020b 9523272c f 5d5b051 8f d4b796
t = 64: 19df a7ac 6b61c9el ed9b0082 9523272c f 5d5b051
t = 65: 101655f 9 19df a7ac 5ad87278 ed9b0082 9523272¢
t = 66 : Oc3df 2b4 101655f 9 0677e9eb 5ad87278 ed9b0082
t = 67 : 78dd4d2b Oc3df 2b4 4405957e 0677e9eb 5ad87278
t = 68 : 497093c0 78dd4d2b 030f 7cad 4405957e 0677e9eb
t = 69 : 3f 2588c2 497093c0 de37534a 030f 7cad 4405957e
t = 70 : c199f 8c7 3f 2588c2 125c24f 0 de37534a 030f 7cad
t = 71: 39859de7 c199f 8c7 8f c96230 125c24f 0 de37534a
t = 72: edb42de4 39859de7 f0667e31 8f 96230 125c24f 0
t = 73 : 11793f 6f edb42de4 ce616779 f0667e31 8f c96230
t = 74 : 5ee76897 11793f 6f 3b6d0b79 ce616779 f0667e31
t = 75: 63f 7dab7 5ee76897 c45e4f db 3b6d0b79 ce616779
t = 76 : a079b7d9 63f 7dab7 d7b9da25 c45e4f db 3b6d0b79
t = 77 : 860d21cc a079b7d9 dsf df 6ad d7b9da25 c45e4f db
t = 78 : 5738d5el 860d21cc 681e6df 6 d8f df 6ad d7b9da25
t = 79: 42541b35 5738d5e1l 21834873 681e6df 6 dsf df 6ad

That completes the processing of the first and only message block, M®. The final hash value,
H® is calculated to be

H® = 67452301 + 42541b35 = a9993e36
H® = efcdab89 + 5738d5el = 4706816a
H{ = 98badcfe + 21834873 = ba3e2571
H{® = 10325476 + 681e6df6 = 7850c26¢c
H® = c3d2elf0 + d8fdf6ad = 9cd0d89d.

The resulting 160-bit message digest is

a9993e36 4706816a ba3e2571 7850c26¢c 9cd0d89d.

A.2 SHA-1 Example (Multi-Block Message)
Let the message, M, be the 448-bit (¢ = 448) ASCII string

"abcdbcdecdefdefgefghfghighij hijkijkljkImklmnlmnomnopnopg™.
The message is padded by appending a 1" bit, followed by 511 '0" bits, and ending with the
hex value 00000000 000001cO (the two 32-bit word representation of the length, 448).
Thus, the final padded message consists of two blocks (N = 2).

For SHA-1, the initial hash value, H?, is

27

The words of the first padded message block, M), are then assigned to the words W, ...,Wis of

H{® = 67452301
H® = ef cdab89
H = 98badcf e
H = 10325476
H©® = c3d2elfO0.
the message schedule:
Wo = 61626364
Wi, = 62636465
W, = 63646566
W; = 64656667
W, = 65666768
Ws = 66676869
Ws = 6768696a
W, = 68696a6b

696a6b6¢C
6a6b6cod
6b6c6dbe

= 6¢c6d6e6f
= 6d6e6f 70

6e6f 7071
80000000
00000000.

The following schedule shows the hex vaues for a, b, ¢, d, and e after passt of the “for t =0to
79" loop described in Sec. 6.1.2, step 4.

~ ~ ~ ~ ~ ~+ ~ ~ ~ ~ ~ ~+ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

NN NNN B R R R e
BRBNORBEEREGRE

a

0116fcl7
ebf 3b452
5109913a
2c4f 6eac
33f 4ae5b
96b85189
db04ch58
45833f Of
c565c35e
6350af da
8993ea77
el9ecaa?
8603481e
32f 94a85
b2e7a8be
42637e39
6b068048
426b9c35
944b1bdl
6c445652
95836da5
09511177
e2b92dc4
fd224575
eeb82d9a
5al42cla

b

67452301
0116fcl7
ebf 3b452
5109913a
2c4f 6eac
33f 4ae5b
96b85189
db04chb58
45833f Of
c565c35e
6350af da
8993ea77
el9ecaa?
8603481e
32f 94a85
b2e7a8be
42637e39
6b068048
426b9c35
944b1bd1l
6c445652
95836da5
09511177
e2b92dc4
f d224575
eeb82d9a

28

c

7bf 36ae2
59d148c0
c045bf 05
baf ced14
9442644e
0Ob13dbab
ccfd2b96
65ae1462
36¢132d6
d160cf c3
b15970d7
98d42bf 6
e264f a9d
b867b2a8
al80d207
4cbe52al
acb9ea2f
5098df 8e
lacla012
509ae70d
6512c6f 4
9b111594
6560db69
c254445d
38ae4b71
7f 48915d

d

98badcf e
7bf 36ae2
59d148c0
c045bf 05
baf ced14
9442644e
Ob13dbab
ccf d2b96
65ae1462
36¢132d6
d160cfc3
b15970d7
98d42bf 6
e264f a9d
b867b2a8
al80d207
4cbe52al
acbh9ea2f
5098df 8e
lacla012
509ae70d
6512c6f 4
9b111594
6560db69
c254445d
38ae4b71

e

10325476
98badcf e
7bf 36ae2
59d148c0
c045bf 05
baf ced14
9442644e
Ob13dbab
ccf d2b96
65ae1462
36¢132d6
d160cfc3
b15970d7
98d42bf 6
e264f a9d
b867b2a8
al80d207
4cbeb2al
acb9ea2f
5098df 8e
lacla012
509ae70d
6512c6f 4
9b111594
6560db69
c254445d

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~+ ~ ~ ~ ~ ~ ~+ ~ ~ ~ ~ ~ ~+ ~ ~+ ~ ~ ~ ~+ ~ ~ ~ ~ ~ ~+ ~ ~+ ~ ~ ~ ~+ ~ ~ ~ ~ ~

N NN
0 N O

49 .

51 .

EIFHRLTS

GREVAEEBEBLUERRBRREY

2972f 7c7
d526a644
ell22421
05b457b2
a9c84bec
52e31f 60
5af 3242c
31c756a9
e9ac987c
ab7c32ee
5933f c99
43f 87ae9
24957f 22
adeb7478
d70e5010
79bcf b08
f 9bcb8de
633e9561
98cleab4d
cbea24le
a2ad4f 02
c8a69090
88341600
7e846f 58
86e358ba
8d2e76¢c8
ce892el10
edea95b1
36d1230a
776¢3910
a681b723
ac0a794f
f 03d3782
9ef 775c3
36254b13
4080d4dc
2bf af 7a8
513f 9ca0l
e5895c¢81
1037d2d5
14a82da9
6d17c9f d
2c7b07bd
f df 6ef f f
112b96e3
84065712
ab89f b71
c5210e35
352d9f 4b
1la0eOela
d0d47349
ad38620d
d3ad7c25
8ce34517

5al42cla
2972f 7c7
d526a644
ell22421
05b457b2
a9c84bec
52e31f 60
5af 3242c
31c756a9
e9ac987c
ab7c32ee
5933f ¢c99
43f 87ae9
24957f 22
adeb7478
d70e5010
79bcf b08
f 9bcb8de
633e9561
98cleab4
c6ea24le
a2ad4f 02
c8a69090
88341600
7e846f 58
86e358ba
8d2e76c8
ce892e10
edea95bl
36d1230a
776¢3910
a681b723
ac0a794f
f 03d3782
9ef 775c3
36254b13
4080d4dc
2bf af 7a8
513f 9cal
e5895c¢81
1037d2d5
14a82da9
6d17c9f d
2c7b07bd
f df 6ef f f
112b96e3
84065712
ab89f b71
c5210e35
352d9f 4b
la0eOeOa
d0d47349
ad38620d
d3ad7c25

29

bbae0Ob66
96850b06
cabchdf 1
3549a991
78448908
816d15ec
2a7212f b
14b8c7d8
16bcc90b
4c71d5aa
3a6b261f
aadf Ocbb
564cff 26
50f eleba
89255f c8
2b7addle
35c¢39404
le6f 3ec?2
be6f 2e37
58cf a558
26307a99
b1ba8907
a8ab53c0
3229a424
220d0580
1f allbd6
alb8d62e
234b9db2
33a24b84
7b7aa56¢
8db448c?2
1ddb0Oe44
e9a06dc8
eb029e53
bcOf 4de0
e7bddd70
cd8952c4
10203537
Oaf ebdea
144f e728
79625720
440df 4b5
452a0bb6a
5b45f 27f
4bleclef
ff 7dbbf f
c44ae5b8
al0195c4
6ae27edc
7148438d
cd4b67d2
86838382
74351cd?2
6b4e1883

7f 48915d
bbae0Ob66
96850b06
cabcbdf 1
3549a991
78448908
816d15ec
2a7212fb
14b8c7d8
16bcc90b
4c71d5aa
3a6b261f
aadf Ocbb
564cff 26
50f eleba
89255f c8
2b7addle
35c¢39404
le6f 3ec?2
be6f 2e37
58cf a558
26307a99
b1ba8907
aB8ab53c0
3229a424
220d0580
1f allbd6
alb8d62e
234b9db2
33a24b84
7b7aa56¢
8db448c?2
1ddb0Oe44
€9a06dc8
eb029e53
bcOf 4de0
e7bddd70
cd8952c4
10203537
Oaf ebdea
144f e728
79625720
440df 4b5
452a0b6a
5b45f 27f
4bleclef
ff 7dbbf f
c44ae5b8
al0195c4
6ae27edc
7148438d
cd4b67d2
86838382
74351cd?2

38ae4b71
7f 48915d
bbaeOb66
96850b06
cabchdf 1
3549a991
78448908
816d15ec
2a7212fb
14b8c7d8
16bcc90b
4c71d5aa
3a6b261f
aadf Ocbb
564cff 26
50f eleba
89255f c8
2b7addle
35c¢39404
le6f 3ec?2
be6f 2e37
58cf ab58
26307a99
b1ba8907
a8ab53c0
3229a424
220d0580
1f allbd6
alb8d62e
234b9