
Forensic Methods and Techniques for the
Detection of Deniable Encryption

ANGELA IRWIN, 45455249
SECURITY FORENSICS PROJECT, COSC 419
PGD COMPUTER SECURITY AND FORENSICS

UNIVERSITY OF CANTERBURY
20 OCTOBER 2008

ii

Abstract

Deniable encryption allows an encrypted message to be decrypted to different sensible plaintexts, depending

on the key or passphrase used or otherwise makes it impossible to prove the existence of the real message

without the proper encryption key. This allows the sender to have plausible deniability if compelled to give up

his or her encryption key. Deniable file systems allow for the creation of an encrypted volume on a hard disk

and a second, hidden deniable file system created inside with access by a second password. Deniable file

systems are different from encrypted file systems in that encrypted file systems are visible but

indecipherable.

Deniable file systems were first introduced as a tool to assist human rights workers protect sensitive data in

the field, however, they can be used to hide criminal and terrorist activity and espionage.

This paper reviews work already completed by scholars in the area of deniable decryption and deniable file

systems and provides an overview of five of the most common deniable encryption tools currently available,

namely, BestCrypt V8, FreeOTFE, TrueCrypt, PhoneBookFS and Rubberhose. The review examines the

general features and techniques employed by each tool to deniably encrypt plaintext and investigates the

methods employed by each to counter disk surface analysis, cryptanalysis attacks and identifies issues that

may potentially impact on the products’ ability to maintain plausible deniability. Deniable encryption vendors

claim that, when their products are used, there is no way for an adversary to identify the existance of hidden

volumes or data contained within them, thereby maintaining plausible deniability should a user be requested

or forced to reveal their encryption keys. However, recent research by Czeskis et al, who reviewed the

TrueCrypt file system, shows that the operating system itself, Microsoft Word and Google Desktop can

compromise the deniability of a TrueCrypt file system.

FreeOTFE, one of the tools reviewed, is selected for in-depth disk surface analysis to investigate whether

evidence of a hidden volume can be found. Disk surface analysis focuses on three main areas: examination

the volume’s critical data block, breakdown of the Master File Table (MFT) entries for the outer volume and

the files contained inside the hidden volume to determine whether any useful information can be gained to

provide clues to the presence of the hidden volume and searching for evidence of data leakage from the

hidden volume into other areas of the hard disk.

The aim of this research is to establish whether or not evidence of a hidden volume can be found using

forensic analysis tools. It is not the intention of this research to decrypt or view the data contained within the

hidden volume.

Analysis shows that no useful information can be gained from the volume’s critical data block (CDB) as the

full CDB is encrypted. Also, the MFT entries provide no assistance in determining whether a hidden volume

is present. However, there are many areas of data leakage from the hidden volume and the files contained

within those volumes that occur during normal operation of the software that would result in suspicion of the

presence of a hidden volume.

iii

Contents Page

CHAPTER 1 INTRODUCTION...1

CHAPTER 2 LITERATURE REVIEW ...2

CHAPTER 3 SURVEY OF DENIABLE ENCRYPTION TOOLS...5

3.1 BestCrypt version 8 ...5
3.2 FreeOTFE ...8
3.3 TrueCrypt ..9
3.4 PhoneBookFS ...14
3.5 Rubberhose...16

CHAPTER 4 METHODOLOGY ..18

4.1 Methods and principles ..18
4.2 Disk analysis tool used ..19

CHAPTER 5 RESULTS AND DISCUSSION...20

5.1 Examination of the volume’s critical data block...21
5.2 Examination of the Master File Table (MFT)...23
5.3 Evidence of data leakage from the hidden volume ...29

CHAPTER 6 CONCLUSIONS ..35

REFERENCES ..36

iv

List of figures

Figure 1 BestCrypt monitoring data Page 6

Figure 2 BestCrypt original container Page 6

Figure 3 BestCrypt original container holding hidden data Page 6

Figure 4 A standard TrueCrypt volume Page 11

Figure 5 A standard TrueCrypt volume with a hidden volume Page 11

Figure 6 Example layout of system drive containing a hidden operating system Page 12

Figure 7 PhoneBook filesystem file structure Page 15

Figure 8 FreeOTFE mounted volumes Page 18

Figure 9 Contents of doc2HV.doc Page 19

Figure 10 FreeOTFE volumes in Drive C Page 20

Figure 11 VolA.vol location information and critical data block Page 20

Figure 12 Layout and contents of a critical data block Page 21

Figure 13 CDB for outer volume of VolA.vol Page 22

Figure 14 CDB for hidden volume of VolA.vol Page 22

Figure 15 CDB for outer volume of VolA.vol once mounted Page 22

Figure 16 MFT entries for VolA.vol Page 23

Figure 17 MFT entry for doc2HV.doc Page 24

Figure 18 MFT file structure Page 24

Figure 19 Example of document saved in MFT Page 28

Figure 20 Files contained in hidden volume Page 29

Figure 21 Contents of Hidden file doc2HVWBB.doc Page 29

Figure 22 Hiberfil.sys Page 30

Figure 23 MFT entry for doc2HVWBB.doc Page 30

Figure 24 Reference to hidden document and hidden volume contained in free space Page 30

Figure 25 Reference to doc2HVWBB.doc.lnk in ntuser.dat Page 31

Figure 26 Reference to hidden document in System Volume Information folder Page 31

Figure 27 Evidence of the drives that have been mounted Page 31

Figure 28 Folders and files visible in Windows Explorer Page 32

Figure 29 Drive letters assigned to mounted volumes Page 32

Figure 30 Contents of the H Drive Page 33

Figure 31 Documents contained in VolA.vol not visible through Windows Explorer Page 33

Figure 32 Contents of documents contained in VolA.vol not visible in Windows Explorer Page 34

v

List of tables

Table 1 Deniable encryption products Page 5

Table 2 Data structure for basic MFT entry Page 25

Table 3 Data structure for the first 16 bytes of an attribute Page 26

Table 4 Data structure for basic MFT entry Page 26

Table 5 $STANDARD_INFORMATION attribute data for doc2HV.doc Page 27

Table 6 $FILE_NAME attribute data for doc2HV.doc Page 27

1

CHAPTER 1 INTRODUCTION
Information technology has advanced greatly in recent years and now pervades every corner of society. The
proliferation and sophistication of technology has resulted in a change in the criminal landscape whereby
criminals and terrorists use technology in the commissioning of their crimes and to communicate covertly.

Fears surrounding terrorism and organised crime have resulted in many countries introducing legislation that
allows interception of communications, acquisition and disclosure of data relating to communications and
acquisition of the means by which electronic data protected by encryption or passphrases may be decrypted
or accessed [1]. For example, Section Three of the Regulation of Investigatory Powers Act (RIPA) came into
force in the United Kingdom in October 2007, seven years after the original legislation passed through
Parliament. The Act, which primarily intended to deal with terror suspects, allows police to demand
encryption keys or be provided with a clear text transcript of encrypted text. Non-compliance with an order
can result in up to 5 years imprisonment.

Steganography, the art of hiding messages within a cover file or document in such a way that others cannot
discern its presence or contents, has been used by criminals, terrorists and child pornographers for a
number of years to conceal their activities. However, advancements in steganography detection tools,
forensic techniques and legislation, where laptop computers can be searched and seized at international
borders, have rendered the use of steganography to hide evidence of unlawful activity inadequate.

The shift from reactive policing of incidents to proactive policing and management of risks has fuelled
interest in deniable encryption tools and techniques.

Deniable encryption is encryption that allows its user to deny the fact that he encrypted a message he
actually did encrypt. Traditional ciphertexts commit to a given plaintext and hence the encrypter cannot
claim that he encrypted a different message. Deniable encryption, on the other hand, allows its user to point
to a different (innocuous but plausible) plaintext and insist that this is what he encrypted. The holder of the
ciphertext will not have the means to differentiate between the true plaintext and the bogus-claim plaintext.
In other words, deniable encryption allows an encrypted message to be decrypted to different sensible
plaintexts, depending on the key or passphrase provided or otherwise makes it impossible to prove the
existence of the real message without the proper encryption key. This allows the sender to have plausible
deniability if compelled to give up his or her encryption key.

Although there is escalating interest in deniable encryption in the media and an increase in the number of
free and commercial deniable encryption products on the market, very little scholarly work has been
completed in the area of deniable encryption and counter deniable encryption techniques.

Deniable encryption vendors claim that, when their products are used, there is no way for an adversary to
identify the existance of hidden volumes or data contained within them, thereby maintaining plausible
deniability should a user be requested or forced to reveal their encryption keys [3, 4, 5, 6, 7]. The aim of this
research is to prove or disprove this claim by using WinHex, a forensic analysis tool, to analyse a FreeOTFE
outer volume with a hidden volume created inside it to determine whether the hidden volume or any of its
contents is detectable when disk surface analysis is performed on it.

The paper is organised as follows: Chapter 2 reviews the work already completed by scholars in the area of
deniable decryption and deniable file systems. Chapter 3 provides an overview of the deniable encryption
tools that are currently available. The review examines the general features, cryptographic algorithms,
security features and techniques employed by each tool to deniably encrypt plaintext. Chapter 3 also looks
at the methods employed by each tool to counter disk surface analysis and cryptanalysis attacks and
discusses the issues that may potentially impact on the products’ ability to maintain plausible deniability.
Chapter 4 discusses the methodology used for testing the claim. Chapter 5 presents detailed results and
discussion of the analysis and testing performed on the FreeOTFE outer and hidden volumes. Finally,
Chapter 6 concludes the paper by discussing whether deniable plausibility can be maintained in FreeOTFE
when analysed using forensic analysis tools such as WinHex.

2

CHAPTER 2 LITERATURE REVIEW
Despite the growing need for counter deniable encryption methods and techniques, to date scholars and
researchers have overlooked the area of counter deniable encryption as a topic for investigation. To my
knowledge only one paper has been published in the area of defeating encrypted and deniable file systems,
therefore, this chapter of the report also examines papers that have been published on the use of deniable
encryption for hiding data from adversaries.

Scholars have proposed many schemes for providing plausible deniability through the use of encrypted and
steganographic file systems, however, these have shown varying degrees of success. This chapter of the
report discusses the schemes proposed.

Canetti et al [2] published the first paper on the subject of deniable encryption in 1996. Until that point,
researchers focussed on encryption for passive semantic security, which is necessary for protecting
communications from passive eavesdropping. At that time [2] believed that commonly accepted
cryptographic practices fell short of providing the necessary degree of protection in situations where a user
was under duress or coercion to disclose his or her private keys. The aim of their research was to introduce
the concept of deniable encryption where a user could generate fake random choices that make the cipher
text look like an encryption of a different cleartext, therefore, keeping the real cleartext private.

The authors of [2] look at public-key encryption, where the sender and receiver have no prior shared secret
information and shared-key encryption, where the sender and receiver share a random, secret key about
which the adversary is assumed to no have prior information. They describe two public-key deniable
encryption schemes. The first being a basic scheme, which offers a partial solution to the problem and acts
as the building block in the construction of their main scheme.

Their main scheme, called the Parity Scheme, is where the probability of a successful attack vanishes
linearly in the security parameter. Their schemes are sender-deniable and are based on the simple idea that
the sender can pick an element in some domain either randomly or pseudo-randomly and that the receiver,
having some secret information, can tell whether the element was chosen randomly or pseudo-randomly
while a third party cannot tell the difference. With the basic scheme, the sender can fake his message in one
direction only. To fake in both directions, [2] came up with two simple constructions of translucent sets,
which use a trapdoor permutation and a third construction that relies on the lattice-based public-key
cryptosystem.

They investigated a one-time pad shared-key deniable encryption scheme, which assumes that the sender
and the receiver share a sufficiently long random string, and each message m is encrypted by bitwise XOR-
ing it with the next unused |m| bits of the key. The message m can be chosen as late as at time of attack.
However, using the one-time pad is generally impractical, since the key has to be as long as all the
communication between the parties. It is possible, however, to transform any given shared key encryption to
a deniable one, without increasing the message length, by using a combination of public-key deniable
scheme and private-key deniable scheme. This works by making the public-key deniable scheme more
efficient by way for first sending (using public-key deniable scheme) a deniable shared key and then
switching to a private-key deniable scheme.

Nathan Karsten’s paper [9] published in 2006 discusses two deniable encryption schemes; TrueCrypt, a free,
open source deniable encryption package and Deniability, a program written by the author based on a static,
interleaved scheme.

The difference between the authors scheme and the TrueCrypt scheme is that the authors scheme does not
allow a user to modify any enciphered data after it has been encrypted without extracting all of the hidden
messages. This is compared to the TrueCrypt scheme, which allows at least one of the encoded messages
to be modified without knowledge of all hidden messages.

Another important difference between the two schemes is that the TrueCrypt scheme creates hidden
volumes and allocates a contiguous block for each hidden message, whereas the authors scheme divides
each message into a collection of blocks of a known size, encrypts them, combines them together in a non-
contiguous order and then stores them in an encapsulating file or device.

[9] believes his Deniability scheme to be very secure but acknowledges the need for a password salt and
master password to be included and confesses that there is a small, but statistically unlikely, chance of

3

collisions when decrypting messages. These collisions may happen when decrypting a message a block
from another message, which appears to belong to the message being decrypted, corrupts the current byte
and all subsequent bytes causing the sequence numbers to be incorrect.

The most recent paper, published by Czeskis et al [10] in 2008, investigates the effectiveness of TrueCrypt
version 5.1a in creating and maintaining a secure deniable file system. The paper highlights how Windows
Vista operating system, Microsoft Word and Google Desktop compromise the deniability of TrueCrypt and go
on to suggest some approaches to overcoming the challenges of modern operating systems in maintaining
deniability.

The authors of the paper show that “deniability, even under a very weak model, is fundamentally
challenging” and that the natural processes of the Windows operating system can “leak significant
information outside the deniable volume”. They identify three broad classes of information leakage vectors
that affect the deniability of a TrueCrypt hidden volume. These are:

Leakage from the operating system via Windows Registry and shortcuts: Windows Registry reveals the fact
that a person used TrueCrypt on their machine, and the locations where the TrueCrypt volumes were
mounted but no other information about the container’s file name, location, size or type which would directly
compromise the deniability of the hidden volume. The shortcut, or .lnk files, which are created automatically
by Windows, store a wealth of information about files, including the real file’s name, length, date of creation,
time of access and the volume serial number of the file system on which the real files are stored. The .lnk
file can be used to determine whether a hidden volume is present.

Leakage from the primary application via Word Auto Saves: When a file is edited, many applications create a
local copy of the file and record all of the changes made to the original. Although Word removes the
backup file after the user closes the primary file, Word does not invoke a secure delete. The authors were
able to repeatedly recover previously edited files that were stored on a hidden volume by running a free,
easy to use data recovery tool. Copies of hidden files could be recovered after a reboot and, in the case of
a premature termination of the software; auto-recovered files persisted on the local disk in clear view and
could be recovered by Microsoft Word even though the TrueCrypt volume was not mounted.

Leakage from non-primary applications such as Google Desktop: Google Desktop allows previous states of
Microsoft Word documents to be viewed. Google Desktop caches snapshots of documents and files and
stores them for viewing at a later time, allowing an attacker to view the current state of the document and
how it evolved over time. With Google Desktop installed and running, the authors were able to easily
recover a number of snapshots of a hidden file by simply searching for a keyword, even after the volume was
dismounted. They were able to repeat this irrespective of the mount point of the volume or the mount type.
The authors suggest that Google Desktop indexing feature be paused whenever a TrueCrypt volume is
being used.

Although the authors identify the aforementioned information leakage vectors, they recognise that there may
be many other scenarios or applications that leak information that they have not identified. They go on to
say that operating systems and their underlying hardware should assist in ensuring deniability as the use of
operating systems such as HiStar, which ensures that information about a deniable file system are not
leaked to another part of the system, may be “overkill to prevent most typical information leaks”. They
identify a more effective approach as installing a file system filter that disallows processes write access to a
non-hidden volume, once that process reads information from a hidden volume.

Oler & Fray [12] investigated the use of deniable file systems as a means of hiding the existence of
encrypted files. They explored the most important achievements in the area of steganographic file systems
[13, 14, 15] but they consider each of the systems investigated to have serious drawbacks.

Firstly, performance in the Anderson et al scheme [13] is very poor because lots of files must be XOR-ed to
ensure computational security and there is an assumption in their argument that an opponent has no prior
knowledge of any part of the plain text, which they believe does not stand in real life. The second concept
introduced by [13] is a file system that initially contains only random blocks and the data is stored in an
encrypted form together with dummy blocks. The location of the real files is determined by the key, which is
derived from the real file name. The use of encryption ensures that real files are indistinguishable from
dummy blocks. One of the problems that arise from this scheme is that collision of blocks of the hidden files
is possible. They rectify this by duplicating blocks and writing them to numerous locations before the
encryption redundant data is added to it. Later, when the system tries to load such a block, all copies of the
block are decrypted and redundant data is compared to determine whether the block is corrupted.

4

Inspired by the work of [13], RSA Laboratories, the authors of [14] proposed hidden files be placed in unused
blocks of a normal (non-steganographic) partition and the location of the hidden files be determined by
querying an encrypted external block allocation table. No attempt is made to hide the block allocation table
because the presence of the driver would make it easy to establish its presence. Each block is encrypted in
cipher block chaining (CBC) mode and its initialisation vector (IV) is stored in the block allocation table. A
hard coded password for each block is derived from the password for a given security level and the block
number. This hard coding makes it very difficult to change.

Zhou et al, the authors of [15] aimed to create a file system that was reliable and could efficiently manage
large volumes of data and be easily adopted by the mass market. The authors believed the work of [13] and
[14] were ineffective at achieving these goals. The main reasons being space utilisation, the excessive
number of input/output operations required and lack of reliable protection from data loss.

The authors of [15] introduce the concept of “abandoned blocks” to counteract the problem of disclosing the
existence of hidden files to an adversary. In previous systems, hidden files were not registered with the
central directory, but the blocks occupied by them were marked as being used in the allocation bitmap. This
prevented overwriting by other files but disclosed the existence of hidden files to the adversary. However,
this approach too proved ineffective so the authors introduced the concept of “dummy hidden files”, these
files do not contain any relevant data but are periodically updated to prevent the analysis of updates of
unused blocks. Files are located by the address derived from the hash of the file name, access key and
user Id. The hash is stored in the structure of the hidden file and is used to retrieve the file at a later date.
Blocks for a new file are looked-up randomly and real data is not stored there. Although this system has
increased performance and efficiency, a considerable drawback is its inability to overwrite or remove hidden
files. This causes problems in multi-user environments where a malicious user fills up all free space, making
it possible to estimate how much hidden data exists in the file system.

Oler & Fray [12] introduce the concept of a superblock, which they believe addresses the problems they
identified in [13], [14] and [15]. The fundamental concepts of their approach is to use encryption and several
independent hidden volumes on the same physical partition to allow users to place mildly incriminating data
in one volume and highly sensitive data in another. Upon request, the user can give the passphrase for the
first volume and deny the existence of the other. Each volume does not know that the others exist, unless
they are open at the same time, the authors believe that this improves reliability and performance.

Lack of knowledge allows data to be overwritten. Writing to blocks used by closed volumes is a desirable
situation as no suspicion of hidden files arises and it becomes possible to remove hidden data without the
need to access the hidden volume. To compensate for possible data loss, all stored information is
replicated. From the operating system’s point of view, each volume is treated as a separate file system and
can have a separate mount point. The authors recognize that their work is still in its infancy and needs a lot
more work to prove proof of concept in a real world environment.

Other authors who have researched steganographic filesystems for plausible deniability include:

McDonald and Kuhn [16] whose system uses an openly visible encrypted block-allocation table and allows
users to completely fill the disk safely when all hidden levels are open. The only storage overhead comes
from the adjustable replication of blocks. In addition, their scheme allows them to share a partition with a
normal widely used file system, which simplifies installation and provides an additional degree of plausible
deniability by making hidden files indistinguishable from unused blocks.

Pang et al [17] explore StegFS as a means of offering plausible deniability to owners of protected files.
Unlike previous steganographic schemes, they believe their construction satisfies the prerequisites of a
practical file system in ensuring integrity of the files and maintaining efficient space utilisation. Their
experiment results confirm that StegFS achieves order of magnitude improvements in performance and/or
space utilisation over existing schemes.

5

CHAPTER 3 SURVEY OF DENIABLE ENCRYPTION TOOLS
Chapter 3 provides an overview of the deniable encryption tools that are currently available. The review
examines the general features, cryptographic algorithms, security features and techniques employed by
each tool to deniably encrypt plaintext. Chapter 3 also looks at the methods employed by each tool to
counter disk surface analysis and cryptanalysis attacks and discusses the issues that may potentially impact
on the products’ ability to maintain plausible deniability.

Table 1 below details the 7 deniable encryption tools identified during Internet research. All of the tools
identified with the exception of StegFS and Off-the-Record Messaging, have been included in the review.

No. Name Platform Availability Notes
1 BestCrypt MS Windows Commercial

2 FreeOTFE MS Windows, PocketPC,
PDA

Free open source

3 TrueCrypt Windows, Mac & Linux Free open source

4 PhoneBookFS Linux Free open source No longer maintained

5 Rubberhose Linux Free open source No longer maintained

6 StegFS Linux Free open source Contains file corrupting bug

7 Off-the-Record Messaging Instant Messaging Free open source

Table 1: Deniable encryption products

StegFS was not reviewed as it is reported to contain a file-corrupting bug and Off-the-Record Messaging
was not reviewed as it is used for deniably encrypting instant messages. Although there may be other less
well-known deniable encryption tools available, research was only carried out on well-established ones.

3.1 BestCrypt version 8

BestCrypt [3] is a commercial data encryption system that provides plausible deniability through the use of
hidden containers. BestCrypt can be used in both Windows and Linux environments.

BestCrypt supports numerous cryptographic hash and cipher algorithms. Hash algorithms supported are
AES, Blowfish, CAST, GOST 28147-89, RC-6, Serpent and Twofish. Ciphers supported are GOST, SHA-1
and SHA-256. The modular design of BestCrypt allows third party encryption software or hardware to be
inserted as security extensions into the BestCrypt software.

BestCrypt version 8 utilises tweakable narrow-block encryption mode, also known as LRW encryption mode,
which is designed for applications working at disk sector level and is more secure than modes such as
Cipher Block Chaining (CBC). LRW addresses threats such as copy-and-paste and dictionary attacks.

BestCrypt works by creating a container file on the hard disk and mounting the container file to a virtual
drive. All files stored in the virtual drive are stored in the mounted container in encrypted form. Multiple
containers can be created on the hard disk, with each container having its own passphrase, which is
specified by the user when the container is created. This same passphrase is used when the virtual drive
linked to the container is opened.

The virtual drive is used to access the encrypted data and files stored in containers. To access the data, the
user must mount the appropriate container to the selected virtual drive and open the virtual drive using the
container's passphrase. The virtual drive must be closed after use to prevent unauthorised users from
gaining access. If a computer is closed down incorrectly or it loses power, all virtual drives are closed
automatically and the keys generated disappear, the virtual drive letter is removed from the list of available
disks and access becomes impossible. When a virtual drive is closed, data cannot be read or stored on it.

BestCrypt uses transparent encryption, which means that every read operation on the virtual drive causes
decryption of the data, and every write operation causes encryption of data to be written. This ensures that
data is always stored in a safe, encrypted form and appears in its natural form to the applications that
process the data.

6

BestCrypt drivers monitor all read and write requests and performs encryption and decryption of the
transferring data on the fly, see Figure 1 below:

Figure 1: BestCrypt monitoring data

The BestCrypt driver does not process all input and output requests, instead, it creates and supports its own
virtual drives and only processes input and output operations for these drives.

BestCrypt provides plausible deniability by creating hidden containers inside original containers. A
BestCrypt original container file consists of the three parts shown in Figure 2 below. The first 512 bytes of
the container holds the data required to verify the integrity of the file, the second part of the container is the
Key Data Block; this stores the array of encryption keys and the final part of the container holds the
encrypted data.

Figure 2: BestCrypt original container

When mounting the original container, BestCrypt verifies the integrity of the container. It then calculates a
hash according to the passphrase entered by the user and uses this hash for decrypting the encryption key
from the Key Data Block. BestCrypt then uses the key from the Key Data Block to provide transparent
encryption of the data in the third part of the container.

BestCrypt can encrypt and isolate a header from its container and store it on a removable device such as a
USB drive. Isolating the header increases the security of the container, as the container cannot be mounted
if the header, which contains the encryption keys, is not yielded at the time of mounting.

If a hidden part is created inside the container, BestCrypt creates a new encryption key for the hidden part
and stores it in the Key Data Block of the original container (See Figure 3 below). The position where the key
for the hidden part is stored appears to be marked as unused, this makes it impossible to determine whether
any key for a hidden part exists or not. Spare disk space within the container is itself encrypted as random
data, so replacing some random data with a new randomly generated key does not compromise the hidden
part. The hidden part is stored inside part 3 of the original container without its own Key Data Block, so that
it is impossible to define the borders of the hidden part inside the original container.

Figure 3: BestCrypt original container holding hidden data

7

The procedure for mounting a container with the hidden part inside is as follows:

• BestCrypt tries using the passphrase for mounting the original container first, as if there is no hidden
part inside it.

• If this passphrase is inappropriate for mounting the original container, BestCrypt checks for the
existence of a hidden part and uses the hash value generated from the passphrase to extract the
encryption key for the hidden part.

• If the passphrase is appropriate for opening the hidden part, BestCrypt will mount this part and report
to the user that the hidden part was found. This message informs the user which object was
mounted - the original container or the hidden part.

Once the hidden container has been created within the original container, no additional data can be written
to the original container. This is due to the BestCrypt original container having no knowledge of the hidden
parts’ presence – this is a feature designed to make the original container appear to be the only container
and therefore provide protection from analytical tools. If data is written to the original container the hidden
data may be destroyed.

If a hidden part is created, it means that the data stored inside the original container has no meaning and
exists only for one reason - to disguise the information stored in the hidden part, therefore, mounting of the
original container should be avoided. In fact, the passphrase for the original container should be used as an
“Alarm” passphrase, which means that it should only be used if forced to do so by a challenger. The alarm
passphrase can be used to mount the original container and write some data into it to destroy the hidden
part.

BestCrypt states that only one additional passphrase can be used for the hidden part. For example, if
passphrase ‘A’ is used for the hidden part and a new passphrase ‘B’ is added for the hidden part, the hidden
part can now be mounted with either passphrase ‘A’ or passphrase ‘B’. If, however, a new passphrase ‘C’ is
added to the hidden part, BestCrypt is not aware that some “unused” slot of its header may correspond to
passphrase ‘B,’ and BestCrypt will simply overwrite the slot with encrypted data for the new passphrase ‘C’.
The hidden part will be mountable with ‘A’ and ‘C’ passphrases, but passphrase ‘B’ will become invalid for
the hidden part.

Although it is possible to format the original container, as well as a hidden part inside it, using any available
file system (FAT, FAT32, NTFS), it is recommended that only FAT or FAT32 file systems be used for the
original container.

NTFS is not recommended, for the following reason: NTFS places its tables not only at the beginning of the
drive (as FAT and FAT32 do), but also in the middle sectors of disk and last sectors. Hence, when data is
written to the hidden part, the possibility of corrupting NTFS file system tables in the original container is
high. However, since the FAT and FAT32 file systems store their tables at the beginning of the original
container, the tables will not be damaged when data is written to the hidden part. NTFS can be used for
formatting the hidden part inside containers.

3.1.1 Issues that may affect plausible deniability of BestCrypt

It is possible to restore deleted files from a hard disk if the user has not used a wiping utility to erase
information from the physical disk sectors. BestCrypt provides a ‘Move with Source Wiping’ command to
wipe deleted files, free space and file slack on specified disks but the user must invoke this. It may be
possible to recover data between wipe commands.

When files are transferred between conventional files and BestCrypt logical disks, the operating system does
not erase the files’ contents from the source disk; it will only delete references to the files in the file allocation
table. Contents of the deleted files continue to be stored on the disk and can be easily restored using a
forensics tool.

Windows can put a whole document or segments of it into the swap file in an unencrypted form, even if the
original document is encrypted. Encryption keys, passphrases, and other sensitive information can also be
swapped to the hard drive. Even if all of the security measures of the latest Windows versions are used,
simply investigating the swap file in DOS mode may allow a challenger to extract a lot of information from the
file. BestCrypt allows encryption of the swap file contents but the user must invoke it.

8

3.2 FreeOTFE

FreeOTFE [4] is a free of charge, on the fly transparent disk encryption program that can be used on
Microsoft Windows 2000/XP/Vista platforms, Windows Mobile 2003/2005 and Windows Mobile 6 Personal
Digital Assistants (PDAs) and mobile telephones.

FreeOTFE allows users to create one or more virtual disks or volumes on their computer, with anything
written to them automatically, and securely, being encrypted before being stored on the computers’ hard
drive. Encrypted volumes can be file or partition based.

FreeOTFE supports many cryptographic hash and cipher algorithms. Hash algorithms supported include
MD2, MD4, MD5, SHA-1, SHA-512, RIPEMD-160, Tiger and Whirlpool. Ciphers supported include AES 128,
192 & 256, Blowfish, CAST5 & 6, DES, 3DES, MARS, RC-6, Serpent and Twofish. The modular design of
FreeOTFE allows third party drivers to be created to incorporate new hash/cipher algorithms.

Before the user's passphrase is used to encrypt or decrypt the critical data block (CDB), a Passphrase-
Based Key Derivation Function 2 (PBKDF2) is applied to it to increase security. PBKDF2 applies one of the
cryptographic hashes and one of the ciphers to the entered passphrase, along with a salt value of up to 512
bits and repeats the process many times (depenant upon the number of key iterations chosen by the user –
default value is 2048) to produce a derived key. The derived key is then used as the cryptographic key in
subsequent operations.

Adding the salt to the passphrase reduces the ability to use a preset dictionary to attack the passphrase.
Assume a user's secret key is stolen and he or she is known to use one of 200,000 English words as his or
her passphrase. The system uses a default 256-bit salt. Because of this salt, the attacker's pre-calculated
hashes are of no value. He or she must calculate the hash of each word with each of 2^256 (1.15792089 x
10 77) possible salts appended until a match is found. The total number of possible inputs can be obtained by
multiplying the number of words in the dictionary with the number of possible salts:

2256 x 200,000 = 2.315841785 x 1082

To complete a brute-force attack, the attacker must now compute 2.315841785 x 1082 hashes, instead of
only 200,000. Even though the passphrase itself is known to be simple, the secret salt makes breaking the
passphrase virtually impossible. If the salt changes, the entire attack dictionary needs to be rebuilt.

FreeOTFE uses an encrypted master key system to secure volumes. Every volume has its own master
encryption key, which is generated when the volume is created. This master key is used to carry out the
actual encryption and decryption process used to secure data stored within the volume. A volume's master
encryption key is, in turn, encrypted with the user's passphrase, which has been processed using PBKDF2.
As a result, only the encrypted master encryption key needs to be decrypted and re-encrypted and not the
entire volume, making changes to a volume/keyfile's passphrase an extremely quick operation compared to
a complete volume re-encryption.

Each time a volume is mounted that does not use the default 256-bit salt length, the user must specify the
correct salt length. If the user utilises the keyfile function, the keyfile’s salt length must be specified.

A keyfile is a small file of about 512 bytes, which the user can generate for each volume created. Keyfiles
are useful as they allow the critical information used to mount a volume to be stored separately from the
volume to which they relate. For example, a volume may be stored on a computer, but the information
required to access it can be stored on a cd-rom or a USB drive and locked in a physically secure location.
Keyfiles are encrypted based on a user-supplied keyfile passphrase; this passphrase must be supplied
before the keyfile can be used.

Keyfiles may also be used to provide multiple users with the ability to mount and use the same volume, with
each using a passphrase of their own choice - this is because keyfiles are specific to the volume they are
created for, not to the user who holds them. Although a keyfile for one volume may be able to successfully
mount another volume, the virtual drive shown will appear to be unformatted and the files within the volume
will remain securely encrypted and unreadable.

Normally a volume’s Critical Data Block (CDB) will be stored in the first 512 bytes of the volume. This
increases the size of the volume by the size of the CDB, which can make FreeOTFE volumes more
distinctive and more obvious that a volume file is in fact a volume file. For example, when creating a file

9

based volume, a 2GB volume will be 2,147,484,160 bytes in length - made up of a 2,147,483,648 byte (2GB)
encrypted disk image, plus a 512 byte embedded CDB. However, to get around this weakness, the
developers have made it possible to create a volume without the embedded CDB. The CDB is stored in a
separate file as a standard keyfile that can be stored in a different location to the volume.

FreeOTFE provides users the ability to create hidden volumes that can be stored inside other host volumes.
An offset is used to select the number of bytes from the start of the host volume to determine where the
hidden volume should start. The offset must be in multiples of 512 and should be large enough to ensure
that system areas of the host volume (FAT or NTFS) or files already written to the host are not overwritten.

More than one hidden volume can be stored within the same host volume by using different offsets.
FreeOTFE does not store offset value information so it is important that the same offset value be entered
into the passphrase entry dialog every time the hidden volume is mounted or parts of the hidden volume may
be overwritten and its data destroyed.

Plausible deniability is made possible through the use of these hidden volumes. Plausible deniability in a
FreeOTFE system is largely based on the theory that “you can claim that your volume files are not encrypted
data; you don't know what they are - you can't be expected to know every operation that your operating
system carries out!” [2].

A claim of plausible deniability is only possible with systems that do not embed any kind of signature into
their encrypted data (typically an unencrypted critical data area). FreeOTFE claims to have no such
embedding of signatures.

3.2.1 Issues that may affect the plausible deniability of FreeOTFE

The host volume file must be initialised by having random data written to it in order for deniable encryption to
be successful. This is required because, to generate a file large enough, the host volume file might have
been created by simply writing 0x00's to the hard disk drive. Any hidden volume stored within such a host
volume file may cause suspicion as to whether a hidden volume exists, as the hidden volume will appear as
a large amount of high-entropy data, stuck in the middle of the volume file; interrupting the neat pattern of
0x00's.

The randomness used for this process cannot simply be pseudorandom data, given the size of a typical
volume file, as pseudorandom data can potentially be identified as such, and become predictable. In this
case, the hidden volume will not appear as high-entropy data stuck in the middle of a series of 0x00 bytes,
but as high-entropy data interrupting the pattern formed by the pseudorandom data.

FreeOTFE recommends that users mount the host volume and overwrite all of the free space with a single
pass of pseudorandom data. The data written to the mounted volume will be encrypted as it is written to the
host volume file. But, if the user is forced to hand over the key to the outer host volume, analysis could be
applied to the mounted plaintext version of the host volume, which may be visible in the pattern of
pseudorandom data.

The solution suggested by FreeOTFE is to encrypt the pseudorandom data before it is used to overwrite the
mounted volume's free space; thereby making it impossible to differentiate between any encrypted
pseudorandom number generated data and the encrypted hidden volume, even with the key to the outer
host volume.

If the FreeOTFE drive is not dismounted after use, the virtual drive and the sensitive information contained
within it will be stored in the computers’ memory.

3.3 TrueCrypt

Like FreeOTFE, TrueCrypt [5] is a software system for establishing and maintaining an on the fly encrypted
volume. TrueCrypt never saves any decrypted data to disk; it stores it temporarily in RAM. When the
volume is mounted, data stored in the volume is still encrypted. When Windows is restarted or the computer
is turned off, the volume is dismounted and files stored within it become inaccessible and encrypted. If the
power supply is suddenly interrupted, without proper system shut down, files stored in the volume become
inaccessible and encrypted. To make the files accessible again, the volume must be remounted and the
correct passphrase and/or keyfile must be provided.

10

As with FreeOTFE, TrueCrypt creates a volume that can reside inside a file, also called container, inside a
partition or inside a drive. The minimum size for a TrueCrypt volume is 275 KB for a FAT volume and 2829
KB for an NTFS volume.

To create a volume, the user must select cryptographic hash and cipher algorithms, choose a passphrase
and generate random data by moving the mouse around the screen for up to 30 seconds. This random data
is then used to format the volume and generate the encryption keys.

Hash and cipher algorithms supported by TrueCrypt are as follows: Hash algorithms - SHA-512, RIPEMD-
160 and Whirlpool. Cipher algorithms - AES 256, Serpent, Twofish, AES-Twofish, AES-Twofish-Serpent,
Serpent-AES, Serpent-Twofish-AES and Twofish-Serpent.

TrueCrypt supports two types of plausible deniability: hidden volumes (see sub-section 3.3.1) and a hidden
operating system (see sub-section 3.3.3).

3.3.1 TrueCrypt hidden volumes

When creating a hidden volume, it can be challenging for all but the most experienced and accomplished
user to set the size of the hidden volume in a way that the hidden volume does not overwrite data on the
outer volume. Therefore, a volume creation wizard has been provided which automatically scans the cluster
bitmap of the outer volume to determine the maximum possible size of the hidden volume. The wizard scans
the cluster bitmap to determine if there is an area of uninterrupted free space whose end is aligned with the
end of the outer volume. The area of uninterrupted free space limits the size of the hidden volume. On
Linux and Mac OS X platforms, the wizard does not scan the cluster bitmap; instead the driver detects any
data written to the outer volume and uses their position as described above.

When saving data to the outer volume, it is possible to overwrite data on the hidden volume. TrueCrypt
provides the option of protecting the hidden volume from overwriting by decrypting the hidden volume header
in RAM and retrieving information about the size of the hidden volume. The outer volume is then mounted
and any attempt to save data to the area of the hidden volume is declined until the outer volume is
dismounted. As soon as the volume is dismounted the hidden volume protection is lost and there is no way
of determining whether or not the volume ever used hidden volume protection. Mounting an outer volume
with hidden volume protection automatically enabled would seriously hinder the hidden volumes plausible
deniability, as its existence within the outer volume would be visible. Hidden volume protection is therefore
automatically disabled after a mount attempt is completed, regardless of whether it is successful or not.

A hidden volume can be mounted the same way as a standard volume; the volume mounted is determined
by which passphrase is entered. For example, when the passphrase for the outer volume is entered, the
outer volume is mounted; when the passphrase for the hidden volume is entered, the hidden volume is
mounted.

TrueCrypt first attempts to decrypt the standard volume header using the passphrase entered by the user. If
this passphrase fails, the area of the volume where the hidden volume header can be stored (see Figure 5
below) is opened in RAM and attempts are made to decrypt it. If the header is successfully decrypted, the
information about the size of the hidden volume is retrieved from the decrypted header, which is still in RAM,
and the hidden volume is mounted. Hidden volume headers cannot be identified as such, as they appear to
consist entirely of random data.

The principle of the TrueCrypt hidden volume is that one TrueCrypt volume is created within the free space
of another TrueCrypt volume (see Figures 4 and 5 below). Even when the outer volume is mounted, it is
impossible to prove that a hidden volume resides within it; this is because free space on any TrueCrypt
volume is filled with random data when the volume is created and no part of the dismounted hidden volume
can be distinguished from this random data. In fact, TrueCrypt claims that it is impossible to identify a
TrueCrypt volume as being such since, until decrypted, a TrueCrypt volume appears to consist of nothing
more than random data, containing no signature of any kind, thus making it impossible to prove that a file, a
partition or a device is a TrueCrypt volume or that it has been encrypted. However, this does not hold true if
the Quick Format and Dynamic options are used when the volume is created.

11

Figure 4: A standard TrueCrypt volume

Figure 5: A standard TrueCrypt volume after a hidden volume has been created within it

In order to achieve and maintain plausible deniability, TrueCrypt does not modify the file system or change
information about free space within the outer volume in any way. However, the optional .tc file extension,
which is officially associated with TrueCrypt and must not be added to the volume if plausible deniability is to
be maintained, may inadvertently be added as a file extension by an inexperienced user, therefore making it
possible to identify volumes and hidden volumes.

When formatting a hard disk partition as a TrueCrypt volume, the partition table, which includes the partition
type, is never modified and no TrueCrypt signature or ID is written to the partition table. However, it may be
possible to identify activity on a file-hosted volume or a keyfile because TrueCrypt preserves the timestamp
of when the container or keyfile was last accessed or last modified, unless the user disables this behaviour in
the preferences section. This is another area where the efforts to achieve and maintain plausible deniability
may fall down. Details of other well-published weaknesses in maintaining plausible deniability in TrueCrypt
hidden volumes are detailed in Section 4.3.2 below.

3.3.2 Issues that may affect plausible deniability of hidden volumes in TrueCrypt

If a challenger has access to a dismounted TrueCrypt volume at several points over time, he or she may be
able to determine which sectors of the volume are changing due to normal operations such as creating and
copying new files to the hidden volume, modifying, deleting, renaming or moving files from the hidden
volume. These everyday operations will visibly alter the cipher text contained in the sectors of the hidden
volume, therefore, indicating the presence of the hidden volume.

The issue described above may also occur when the file system, in which a file-hosted TrueCrypt container
is stored, has been defragmented and a copy of the TrueCrypt container, or some of its fragments, remain in
the free space of the defragmented file system on the host volume and also stored in a journaling file system
such as that provided on NTFS.

To counteract these weaknesses, TrueCrypt recommends that the user securely erase free space on the
host volume after defragmenting or avoid defragmenting file systems in which TrueCrypt volumes are stored.
Also, they recommend that users store containers in a non-journaling file system such as FAT32.

Another important issue that can affect plausible deniability is the wear levelling technique used on many
USB devices. Wear levelling is a technique used to help prolong the life of USB flash drives and works by
distributing data evenly across each memory block of the entire drive. This process decreases the total wear
on the drive, thereby increasing the lifetime of the drive [3]. Wear levelling can leave a copy or a fragment of
the TrueCrypt volume on the flash drive.

12

3.3.3 TrueCrypt hidden operating system

A hidden operating system is installed inside a hidden TrueCrypt volume. In order to boot a system
encrypted by TrueCrypt, an unencrypted copy of the TrueCrypt Boot Loader must be stored on the system
drive or on a TrueCrypt Rescue Disk. The presence of the TrueCrypt Boot Loader can indicate that there is
a system encrypted by TrueCrypt on the computer. Therefore, a second encrypted operating system called a
decoy operating system must be created to provide a plausible explanation for the presence of the TrueCrypt
Boot Loader.

As Figure 6 below shows, the decoy operating system is not installed in the hidden volume; therefore, it
should not contain any sensitive files or data. As the existence of the decoy is not designed to be secret, the
decoy operating system passphrase can be revealed to a challenger demanding the pre-boot authentication
passphrase.

Figure 6: Example layout of system drive containing a hidden operating system

There are two pre-boot authentication passphrases: one for the hidden system and one for the decoy
system. To start the hidden operating system, the hidden system passphrase should be entered into the
TrueCrypt Boot Loader screen. Alternatively, to start the decoy system, the passphrase for the decoy
operating system should be entered into the TrueCrypt Boot Loader screen.

When the pre-boot authentication passphrase is entered, the TrueCrypt Boot Loader first attempts to decrypt
the last 512 bytes of the first logical track of the system drive, as this is where the encrypted master key data
for non-hidden encrypted system partitions are stored. If authentication fails, the TrueCrypt Boot Loader
automatically tries to decrypt the area of the first partition behind the boot partition where the encrypted
header of a possible hidden volume might be stored. As mentioned previously, TrueCrypt never knows if
there is a hidden volume in advance.

If the header is decrypted successfully, the information about the size of the hidden volume is retrieved from
the decrypted header, which is still stored in RAM, and the hidden volume is mounted, determined by the
size of its offset.

When running, the hidden operating system appears to be installed on the same partition as the decoy
system. However, in reality, it is installed within the partition behind it in the hidden volume. All read and
write operations are transparently redirected from the system partition to the hidden volume. Neither the
operating system nor applications running on the system will know that data written to and read from the
system partition are actually written to and read from the hidden volume. Data is encrypted and decrypted on
the fly, with a different encryption key from the one that is used for the decoy operating system.

A TrueCrypt system makes use of a third passphrase. This is not a pre-boot authentication passphrase, but
a standard TrueCrypt volume passphrase, which can be disclosed to a challenger if the user is forced to
reveal the passphrase for the encrypted partition where the hidden volume containing the hidden operating
system resides. This allows the hidden volumes’ existence to remain undisclosed.

When the hidden operating system is created, the user must create a partition for it on the system drive. It
must be the first partition behind the system partition and it must be at least 5% larger than the system
partition. However, if the outer volume is formatted as NTFS, the partition for the hidden operating system
must be at least 110% larger than the system partition. This is due to the NTFS file system storing internal
data exactly in the middle of the volume and, therefore, the hidden volume, which is to contain a clone of the
system partition, only being able to reside in the second half of the partition.

13

After some sensitive-looking files have been copied to the outer volume, the cluster bitmap of the volume is
scanned to determine the size of uninterrupted area of free space whose end is aligned with the end of the
outer volume. The maximum possible size of the hidden volume is determined by the size of the system
partition and verification will be required to ensure that it is greater than the size of the system partition, thus
ensuring that no data stored on the outer volume will be overwritten by data written to the area of the hidden
volume.

The process of copying the system is performed in the pre-boot environment before Windows starts and,
depending on the size of the system partition and performance of the computer, may take several hours or
even several days to complete.

When a hidden operating system is running, TrueCrypt ensures that all local unencrypted filesystems and
non-hidden TrueCrypt volumes are read-only. Data can be written to filesystems within hidden TrueCrypt
volumes during this time. The reason for this is that it enables the creation of a secure environment for the
mounting of hidden TrueCrypt volumes and it prevents the analysis and comparing of filesystem journals, file
timestamps, application logs and error logs.

3.3.4 Issues that may affect plausible deniability of the hidden operating system in TrueCrypt

If the decoy operating system were not used frequently enough, i.e. for all non-sensitive data, the absence of
regular activity would indicate the presence of a hidden operating system on the computer.

To prevent Windows saving parts of the program and data files that do not fit into memory to the hard drive,
paging files must be disabled on the system until the process of creating a hidden operating system is
finalised, otherwise, plausible deniability of the hidden operating system will be compromised. The
TrueCrypt installer disables paging files by default when TrueCrypt is installed or updated. If paging is
enabled, the user cannot continue creating the hidden system. However, if during the process of creating
the hidden operating system, the user hibernates the system, the contents of the systems memory will be
written to the hibernation storage file residing on the systems drive, thereby compromising the plausible
deniability of the hidden operating system.

Most operating systems, including Windows, can be configured to write debugging information and contents
of the system memory to memory dump files when an error occurs. These memory dump files may contain
sensitive data. TrueCrypt cannot prevent cached passphrases, encryption keys, and the contents of
sensitive files opened in RAM from being saved unencrypted to memory dump files. When a file stored on a
TrueCrypt volume is opened in a text editor, for example, the content of the file is stored unencrypted in RAM
until the computer is switched off. Also when a TrueCrypt volume is mounted, its unencrypted master key is
stored in RAM.

To avoid this, users must disable memory dump file generation on their computers whilst working with
sensitive data and whilst mounting a TrueCrypt volume.

TrueCrypt is disk encryption software; it does not encrypt data in RAM. Most programs do not clear the
buffers in which they store unencrypted portions of files they load from the TrueCrypt volume, allowing
unencrypted data to remain in memory until the computer is switched off.

If a user opens a file that is stored in a TrueCrypt volume using a text editor and then he forces the
TrueCrypt volume to dismount, the file will remain unencrypted in the RAM allocated to the text editor. This
also applies to forced auto-dismount.

Inherently, unencrypted master keys are stored in RAM that are erased when the computer is cleanly
restarted or shut down and the TrueCrypt volumes automatically dismounted. However, when a computer
loses its power supply suddenly, is reset, hibernates or the system crashes, the keys and other sensitive
data cannot be erased from RAM.

The volume header contains the master key with which a volume is encrypted. If a challenger is allowed to
make a copy of the volume before the volume passphrase and/or keyfile(s) are changed, the challenger may
be able to use a copy of the old header to mount the volume using a compromised passphrase gained
through keylogging software.

If a challenger knows the passphrase or has the keyfiles and has access to the volume, it is possible to
retrieve and keep its master key. If this happens, the volume can be decrypted even after the passphrase
has been changed; this is due to master keys never changing, even when the volume passphrase or keyfiles

14

are changed. To recover from this, the user must create a new TrueCrypt volume and move all files from the
old volume to the new one. The same situation may occur when defragmenting has been performed.

Windows stores various data in the registry file, which TrueCrypt cannot securely and reliably erase. After
examining the registry file, a challenger may be able to tell that TrueCrypt was run on the system and that a
TrueCrypt volume was mounted. However, the challenger cannot determine what the
location/filename/size/type the volume was and which drive letters have been used for TrueCrypt volume(s).
To prevent this, the registry file must be encrypted, by encrypting the system partition or drive.

When the file system in which a TrueCrypt container is stored is defragmented, a copy of the TrueCrypt
container can remain in the free space on the host volume. This has security implications in that if the
volume passphrases or keyfile(s) are changed, a challenger may find the old header of the TrueCrypt
volume and use it to mount the old volume using an old, compromised passphrase. This can be avoided by
using a partition/device-hosted TrueCrypt volume instead of a file-hosted one, erasing free space on the host
volume and refraining from defragmenting systems in which TrueCrypt volumes are stored.

Finally, when a file-hosted TrueCrypt container is stored in a journaling file system, a copy of the TrueCrypt
container may remain in the free space on the host volume. This has the same security implications as
discussed in defragmenting above, with the addition that some journaling file systems also internally record
file access times and other potentially sensitive information. To prevent security issues related to journaling
file systems, a partition/device-hosted TrueCrypt volume can be used instead of file-hosted one or the
container can be stored in a non-journaling file system such as FAT32.

3.4 PhoneBookFS

PhoneBookFS [6] is a filesystem for Linux operating systems that offers encryption with plausible deniability
features. Hash and cipher algorithms supported by PhoneBook are SHA-1 and 256-bit Blowfish
respectively. Inspired by Rubberhose, PhoneBook aims to be easy to install and use and is aimed at
intermediate to advanced Linux users.

PhoneBook uses encrypted volumes with multiple layers of encryption and 'chaffing' to make it difficult or
impossible for a challenger to determine a users full compliance with decryption orders. See Figure 7 below.

For each logical file or directory that can be seen from the mount point, two physical files are written to the
datastore: an inode file, which contains the properties, and the real data file.

The name of the inode file is deterministically hashed from a combination of the layer name and passphrase
plus a randomly generated 31-bit inode number. The passphrase and initialisation vector (IV) for the inode
file are a deterministic hash of layername+layerpassphrase+inodenum. The root directory inode number for
each is hardwired as zero.

The name of the physical data file, passphrase and IV are all randomly selected. These details are stored in
cleartext within the inode file and protected by the inode file’s encryption.

The layermap file is another file type that is stored in the physical datastore. The name of the layermap file,
its passphrase and IV are a deterministic hash of permutations of layermapname+layermappassphrase. The
layermap names and passphrases effectively serve as 'skeleton keys', which unlock the names,
passphrases and IVs of all the constituent layers and files.

When the ls (list directory contents) command is entered on the command line, a list of files is displayed;
these files have garbled names and garbled content. Any challenger analysing the filesystem and the files
contained within it should not be able to make sense of it. With PhoneBook, the more layers that are created
and chaffing applied, the more difficult it becomes to determine how many layermaps, layers or files are
contained in the filesystem, this is because it becomes impossible to determine what is chaff and what is not.

The number of layers contained in the filesystem contributes greatly to its security; if there are only a few
layers the system can become vulnerable to dictionary attacks and passphrase guessing attacks. However,
the greater the number of layers created, the greater the number of passphrases that the user is required to
remember. This contributes to weak passphrase choices and insecure methods of remembering them.

15

Figure 7: PhoneBook filesystem file structure

To counteract this, PhoneBook introduced layermaps. The basic concept behind layermaps is that a user
can create a named layermap with its own passphrase and add any combination of layers to it. The
layermap can then be opened using a single name and passphrase and all of the layers associated with it
will be automatically activated in the right order. A major advantage of using layermaps, from a forensic
point of view, is that if the passphrase for the layermap is obtained it will yield all of the data on all of the
layers that are contained within it.

The filesystem in PhoneBook is hierarchical. For example, if both layer1 and layer2 have a file called
/somedir/somefile.jpg and the user tries to open /mnt/pbfs/somedir/somefile.jpg, he will get the version of
somefile.jpg from layer1. Any files written to the filesystem will also be written to the top-most layer, in this
case, layer1. However, to take full and advantage of the layered cryptographic features of PhoneBook, the
user will, at times, need to control exactly which layers he reads from and writes to. To this end, mounted
PhoneBook filesystems have a 'magic directory' called __layers. Each active layer appears by name as a
subdirectory of __layers.

As mentioned earlier, PhoneBook supports plausible deniability by adding chaff to the physical datastore,
thereby making it difficult, if not impossible, to determine the data that has intentionally been hidden. This is
compounded by all of the files in the datastore having hashed or random names, encrypted or random
contents, and random dates. PhoneBook recommends that between 10% and 400% of the total amount of
real data or 100% or 500% of the size of the largest layer be added as chaff.

3.4.1 Issues that may affect plausible deniability in PhoneBook

The pbfs utility in Linux allows passphrases to be entered on the command line. If this is done, passphrases
are automatically copied into the shell command history files.

It is possible for PhoneBook internal data structures to be swapped out to disk using some versions of Linux,
thereby revealing layer details and passphrases.

A PhoneBook’s filesystem mount point can be exported over a local network but this will lead to
layer/layermap names and passphrases being transported in plaintext.

16

3.5 Rubberhose

Rubberhose [7] is a freely available disk encryption system that allows the hiding of encrypted data.
Released in 1997, Rubberhose was the first successful deniable cryptography program in the world.
Rubberhose currently runs on Linux and NetBSD platforms but there are plans to port it to Windows NT.

Cipher algorithms supported by Rubberhose are DES, 3DES, IDEA, RC-6, Blowfish, Twofish and CAST. In
addition to the built-in ciphers, Rubberhose supports all of the symmetric algorithms from the latest release of
OpenSSL. The modular design of Rubberhose makes it easy to add new algorithms.

When Rubberhose is run for the first time the program writes random characters to the entire drive.
Rubberhose refers to the drive as an “extent”. The random noise generated in this initialisation is
indecipherable from the encrypted data that will be stored on the disk.

When Rubberhose creates partitions, known as ‘aspects’, it does not operate like a normal disk partitioning
program, taking large blocks for each partition, instead, it breaks up the pieces of the encrypted portion into
very small pieces and randomly scatters them across the entire drive so that the bits of data cannot be
tracked and re-assembled.

For example, if we have a hard drive of 1GB and we wish to fill the first Rubberhose-encrypted aspect with
400MB of data and the second aspect with 200MB of data, Rubberhose does not know that we intend to
divide the aspects in this way; it assumes that each of the aspects will be 1GB in size and fills the whole
drive. Rubberhose fills the drive on a first come first serve basis and it continues to provide more space to
any one aspects until the overall disk capacity has been reached.

When the 400MB encrypted aspect is decrypted it looks as though it is 1GB in size with 600MB of free
space. This is how Rubberhose hides the existence of data in the remaining aspect of the disk. When the
second 200MB encrypted aspect is created, Rubberhose writes these bits randomly over the whole 1GB
drive, taking care not to overwrite the bits assigned to the first 400MB encrypted aspect. Each Rubberhose
aspect has its own passphrase and must be decrypted separately.

A Rubberhose aspect is simply a view of the extent from a different perspective, like viewing the same object
from different angles. If the data is seized, a challenger will be unable to determine how many aspects are on
the drive or how much real data is on any one aspect.

Rubberhose relies on internal maps to locate where the actual bits of data are stored amid the random
characters. Each aspect has its own corresponding map and that aspect’s map can only be decrypted when
the correct passphrase has been provided. Rubberhose aspects know nothing about other aspects on the
extent, including their size, maps or existence. This prevents one aspect divulging the presence of another.
The only thing an aspect needs to know is when to avoid overwriting other aspects. When a passphrase is
entered, Rubberhose will only decrypt the tables that map the bits for that one single aspect; all the other
mapping tables for other Rubberhose aspects stay securely encrypted.

Every time a new aspect is created, Rubberhose generates a very long and randomly generated secret
internal master passphrase. This internal master passphrase is then encrypted with the passphrase
provided by the user for the new aspect. The internal master passphrase stays the same for the lifetime of
the aspect, but the passphrase for the aspect can change any number of times. The use of the internal
master passphrase makes Rubberhose highly resistant to dictionary attacks.

When a new passphrase is created, Rubberhose loops for a period of time re-encrypting the first output into
the second, and the second into the third. Each subsequent encryption output is fed back into the next
round of encryption. This makes an attack based on guessing the passphrase extremely difficult, as an
attacker must test each guess through the entire loop. The only way that an attacker can obtain the original
master passphrase is to reverse the process, feeding the output of the decryption into the input of the next
decryption -- through about 175,000 rounds, depending on the speed of the symmetric cipher algorithm
selected.

The salted internal master aspect key unlocks everything in that aspect, including the map of where the bits
of data are located across the drive and the ability to actually decrypt that data. Since this key could be a
point of vulnerability, Rubberhose has designed large walls around the master key. In fact, it could be said
that the master key doesn't touch anything else in the program directly; there is always an obscuring barrier
protecting it.

17

Rubberhose ensures that if a challenger manages to decrypt one of the many small blocks of data in an
aspect, it will not help the challenger to decrypt the remaining blocks and therefore piece together all the
data from an entire aspect.

Using strong pseudo-random number generators, Rubberhose creates a lattice generator for each aspect.
This lattice, which can only be decrypted by using the internal master key for that aspect, is used for
calculating unique encryption and decryption keys for each block of data assigned to a single aspect.
Specifically, the lattice uses a mathematical algorithm to transmute a block number into a key for that block.
Rubberhose puts these blocks inside its own larger blocks.

A Rubberhose-encrypted drive has two types of block: an operating system block (typically 512-8192 bytes)
and a Rubberhose ‘surface-block’, which are randomly scattered all over the drive. The size of the surface
blocks can be configured to suit the needs of the user when Rubberhose is initialised on the hard drive.
Setting Rubberhose to create many smaller surface blocks is more secure than choosing larger sized blocks,
but these will take longer to generate.

In theory a challenger can examine the magnetic properties of the ferrite coating on a disk surface in order to
determine how frequently a program has read or written to a particular section of the drive. This permits the
challenger to guess if a geographic area on the disk is blank (full of random noise) or contains hidden data. If
the challenger can decrypt, for example, aspect 1, but not any other aspect, he can overlay a map of
frequently used drive sections on a map of aspect 1's data map showing unused and used sections. If he
sees an unused section has been accessed for reading or writing very frequently, he can guess that there is
more likelihood that there is hidden material stored there from another aspect. However, to thwart disk
surface analysis based on the intensity of block use and contiguous block prediction, Rubberhose conducts
frequent block-swapping by automatically and invisibly shuffling surface blocks of data around to new
locations on the drive.

Rubberhose uses a technique called ‘whitening code’ to reduce the effectiveness of cryptanalysis. The
whitener is made up of random bits which, when merged with decrypted data from the data blocks, changes
the data in the data blocks slightly by flipping a corresponding bit in the data block. For example, any bit in
the whitener that is a 1, flips a corresponding bit in the decrypted data block. All 0 bits are “held” or “not
flipped”. The result is that some bits in the decrypted data block are flipped and some are not. This prevents
known plaintext attacks because the challenger has no plaintext to work with that is directly translatable into
the encrypted material.

3.5.1 Issues that may affect plausible deniability in Rubberhose

The whitener is vulnerable in the sense that if it is broken for one block, it can be broken for all blocks.
However, there are still other lines of defence, such as separate keys for every block, which limits the
success of cryptanalysis.

18

CHAPTER 4 METHODOLOGY
This chapter looks at the methods and principles applied and tools used during the analysis phase in order to
achieve the results obtained in Chapter 5.

4.1 Methods and principles

One of the deniable encryption products reviewed in Chapter 3 was selected for in-depth disk surface
analysis to investigate whether or not evidence of a hidden volume could be found. FreeOTFE [4] was
chosen because it operates on the MS Windows platform, the most common operating system for laptop and
personal computers and also because it is a free and open source product, which increases its
attractiveness to potential users. In addition, FreeOTFE was chosen because, unlike TrueCrypt [5], no
similar analysis has been carried out.

Two FreeOTFE volumes were created on the C drive. Both volumes were created using the SHA-512 hash
algorithm and AES 256-bit XTS cipher. Microsoft CryptoAPI random number generator was used in the
creation of both volumes to salt the password, create the volume’s master key and create random padding
data. FreeOTFE encrypts the pseudorandom data before it is used to overwrite the mounted volume's free
space; thereby making it impossible to differentiate between any encrypted pseudorandom number
generated data and the encrypted hidden volume, even with the key to the outer host volume.

Once the volumes were successfully created, they were mounted, formatted and the free space
overwritten/shredded with pseudorandom data. Each of the mounted volumes were automatically allocated
the following drive letters:

Volume 1 (control volume)
The first volume, named ‘Vol1’, was created as a control volume. This volume is 60MB in size and contains
a small Microsoft Word document called doc1CV.doc. This volume is used to gain an understanding of the
layout and setup of a standard volume. When Volume 1 was mounted, it was given a drive address of G,
see Figure 8 below.

Volume 2 (outer volume)
The second volume, named ‘VolA’, was created as the outer/host volume inside which the hidden volume
would be created. This outer volume is 200MB in size and contains a small Microsoft Word document called
doc1OV.doc. When Volume 2 was mounted, it was given a drive address of H, see Figure 8 below.

Volume 2 (hidden volume)
The hidden volume was created inside ‘VolA’ and was created as 60MB in size with an offset of 102400.
This means that the hidden part of the volume starts at byte 102400 of the outer/host volume. A small
Microsoft Word document called doc2HV.doc was placed inside the hidden volume. When the hidden
volume was mounted, by entering the passphrase and offset value, it was given a drive address of F, see
Figure 8 below.

Figure 8: FreeOTFE mounted volumes

As mentioned above, a Microsoft Word document was added to each of the volumes in order to determine
whether contents of those documents would be leaked into other areas of the operating system or
environment under normal operating conditions, thereby affecting the product’s ability to maintain plausible
deniability.

19

Each of the documents created contain suspicious content that may prick the attention or interest of
authorities that exercise a search and seizure order on a user’s laptop or personal computer. Figure 9 below
shows the contents of the doc2HV.doc document that was placed inside the hidden volume.

Figure 9: Contents of doc2HV.doc

Once the documents were placed inside their respective volume, all volumes were dismounted. This is in
compliance with FreeOTFE instructions that claim “if drives are not dismounted after use, the virtual drive
and the sensitive information contained within it will be stored in the computers’ memory”.

The aim of this research is to establish whether or not evidence of a hidden volume can be found using
forensic analysis tools. It is not the intention of this research to decrypt or view the data contained within the
hidden volume.

4.2 Disk analysis tool used

The evaluation version of WinHex [11], made by X-Ways Software Technology AG of Germany, was the disk
analysis tool used to perform disk surface analysis and gather evidence during the project. WinHex was
used due to its compatibility with the Windows platform, its forensic features and its easy to use interface.
Features include: case management, log and report feature, report tables, volume snapshots, directory
browser, internal viewer, logical and simultaneous search, indexing, hash database and evidence file
containers.

Unfortunately, many of the advanced forensics features of WinHex were not available to me during this
project as the evaluation version was being used; this made disk analysis very time consuming and
cumbersome.

20

CHAPTER 5 RESULTS AND DISCUSSION
This chapter of the report presents the results and findings obtained during the process of disk surface
analysis. Disk surface analysis focused on three main areas: examination the volume’s critical data block,
see Section 5.1, breakdown of the Master File Table (MFT) entries for the outer volume and the files
contained inside the hidden volume, see Section 5.2, and searching for evidence of data leakage from the
hidden volume into other areas of the hard disk, see Section 5.3.

As can be seen from Figure 10 below, WinHex shows FreeOTFE Volume 1 (Vol1.vol) and Volume 2
(VolA.vol) but does not show the hidden volume created inside Volume 2.

Figure 10: FreeOTFE volumes in Drive C

Figure 11 shows that VolA.vol is within Hard Disk 0, Partition 1, which is the C Drive and has a cluster
number of 21785171, physical sector number of 174281431 and logical sector number of 174281368 and
demonstrates that the full volume has been overwritten with pseudorandom data.

Figure 11: VolA.vol location information and critical data block

21

5.1 Examination of the volume’s critical data block

Each volume’s critical data block (CDB) is contained within the first 512 bytes of the volume, illustrated by
the red box in Figure 11 above. The critical data block contains the password salt, CBD format ID, volume
flags, encrypted partition image, master key length, master key, requested drive letter, volume initialisation
vector length, sector initialisation vector method and random padding, see Figure 12. The CDB could
provide us with valuable information about its associated volume.

Figure 12: Layout and contents of a critical data block

CDB format ID is 8 bits in length and is a version ID, which identifies the layout of the remainder of the
volume details block. When this layout format is used, this will always be set to 3. Later volume file layouts
may have different items in this section, or the layout might change; in which case a different version ID will
be used here.

Volume flags are 32 bits in length and is a bitmap flagging various items:

Bit 0 is unused
Bit 1 is Sector ID zero is at the start of the file

0 = Sector ID zero is at the start of the encrypted data
1 = Sector ID zero is at the start of the host volume file/partition

Bit 2 (unused)
Bit 3 (unused)
Bit 4 is the volume timestamps normal operation

0 = on dismount, volume file timestamps will be reset to the values they were when mounted
1 = on dismount, volume file timestamps will be left as-is (i.e. will indicate the date/time the volume was
last written to)
Note: This bit gets ignored by the GUI, which will operate it according to the user options set at the time
the volume is mounted

Encrypted partition image length is 64 bits and stores the length of the encrypted partition image in bytes

Master key length is 32 bits – this will be set to the length of the master key in bits.

Master key is variable and is the cipher key size in bits. This is set to the random data generated when the
volume was created; and is the en/decryption key used to encrypt the encrypted partition image.

Requested drive letter is 8 bits in size and is the drive letter the volume should be normally mounted as.
This is set to 0x00 if there is no particular drive letter the volume should be mounted as (i.e. mount using the
first available driver letter).

Volume IV length is 32 bits in length. This is set to the length of the Volume IV in bits. If the cipher’s block
size is >=0, this will be set to the cipher’s block size. Otherwise, this is set to 0.

Volume IV if cipher block size is > 0 then cipher block size is set to the random data generated when the
volume was created. When each sector of the encrypted partition is encrypted/decrypted, this value is
XORd with any (hashed or unhashed) sector ID before being used as the sector IV. This guarantees that
every sector within the encrypted partition has a non-predictable IV.
If cipher block size is <= 0, then this is zero.

Sector IV generation method is 8 bits in size. This is set to indicate the method of generating sector IVs. If a
volume IV is present, then it will be XORd with the IV generated using this method, before it is used for the
encrypted/decryption. The IV generated will be right-padded/truncated to the cipher’s block size.

If the cipher’s block size is <= 0, then this must be set to 0
0 = No sector IVs (Null sector IV)

22

1 = Sector IV is the 32 bit sector ID (LSB first)
2 = Sector IV is the 64 bit sector ID (LSB first)
3 = Hash of the 32 bit sector ID (sector ID is LSB first)
4 = Hash of the 64 bit sector ID (sector ID is LSB first)
5 = ESSIV

The “Volume Flags” item is used to determine the location of sector zero (start of encrypted data, or start
of host/file partition).

Random padding #2 – Random padding data. Required to pad out the encrypted block to a multiple of bs,
and to increase the size of this block to a maximum length that can fit within the critical data block.

Each volume has a CDB, therefore, I interrogated the first 512 bytes of the outer volume and hidden volume
to see if I could garner any information or identify a pattern conforming to that mentioned above. Figure 13
shows the contents of the CDB for the outer volume of VolA.vol and Figure 14 shows the contents of the
CDB for the hidden volume.

Figure 13: CDB for outer volume of VolA.vol

Figure 14: CDB for hidden volume of VolA.vol

Figure 15: CDB for outer volume of VolA.vol once mounted

Unfortunately, the CDB offers no assistance in identifying the presence of a hidden volume as no consistent
pattern could be identified in the CDBs examined. This is due to the CDB being encrypted, even when the
outer volume of VolA.vol is mounted.

23

5.2 Examination of the Master File Table (MFT)

The $MFT folder on Hard Disk 0, Partition 1 was searched in order to find MFT entries for VolA.vol (the outer
volume that contains the hidden volume) and doc2HV.doc files (the file that is hidden inside the hidden
volume).

Two MFT entries were found during the search for VolA.vol, see Figure 16 below. However, none of these
were MFT entries for VolA.vol, instead, they referred to a recovered log file, “FileRecoverybyType.log” and a
custom dictionary, both of which contained the word VolA.vol.

No other MFT entries could be found for VolA.vol. I can only conclude from this that FreeOTFE is designed
not to add volume information to the master file table.

Figure 16: MFT entries for VolA.vol

The search for doc2HV.doc returned 6 MFT entries. These were examined in detail to investigate whether
they could provide evidence of the hidden volume in which they were contained. Figure 17 below shows one
of the MFT entries found for doc2HV.doc. This entry will be deconstructed and the results discussed later in
this section.

Before deconstructing the doc2HV.doc MFT entry, it is necessary to introduce the basic concepts of NTFS
and MFT data structures.

24

Figure 17: MFT entry for doc2HV.doc

The Master File Table (MFT) is at the heart of NTFS and has an entry for every file and directory. MFT
entries are a fixed size and contain only a few fields. To date, the entries have been 1,024 bytes in size, but
the size is defined in the boot sector. Each MFT entry uses fixup values, so the on-disk version of the data
structure has the last two bytes of each sector replaced by a fixup value.

Fixup values are used for increased reliability and are incorporated into data structures that are over one
sector in length. The fixup values in large data structures are replaced with a signature value when the data
structure is written to disk. The signature is later used to verify the integrity of the data by verifying that all
sectors have the same signature. The MFT file structure is shown in Figure 18 below.

Figure 18: MFT file structure

25

The data structure for a basic MFT entry is shown in Table 2. Notes have been provided in the description
field wherever possible.

Byte Range Description Essential

0 – 3 Signature (“FILE”)
The standard signature value is “FILE”, but some entries may have
“BAAD” if chkdsk found an error in it.

No

4 – 5 Offset to fixup array
The next two fields are fixup values and the array is typically stored after
byte 42. The offset values are relative to the start of the entry.

Yes

6 – 7 Number of entries in the fixup array Yes

8 – 15 $LogFile Sequence Number (LSN)
The LSN is used for the file system log. It records when metadata is
updated to the file system so that a corrupt file system can be fixed more
quickly.

No

16 – 17 Sequence value
The sequence value is incremented when the entry is either allocated or
unallocated, which is determined by the operating system.

No

18 – 19 Link count
The link count shows how many directories have entries for the MFT entry.
If hard links are created for a file, this number is incremented by one for
each link.

No

20 – 21 Offset to the first attribute
The first attribute for the file is found using the offset value, which is
relative to the start of the entry. All other attributes follow the first one, and
these are found by advancing ahead using the size field in the attribute
header. The end of file marker 0xffffffff exists after the last attribute. If a
file needs more than one MFT entry, the additional entries will have the file
reference of the base entry in their MFT entry.

Yes

22 – 23 In-use and directory flags
The flags field has only two values. The 0x01 bit is set when the entry is in
use and 0x02 is set when the entry is for a directory.

Yes

24 – 27 Used size of MFT entry Yes

28 – 31 Allocated size of MFT entry
The allocated size is how much space the record takes up on disk. This
should be a multiple of the cluster size and should probably be equal to the
size of an MFT file record.

Yes

32 – 39 File reference to base record
This is zero for base MFT records. When it is not zero it is a MFT
reference pointing to the base MFT record to which the record belongs.
The base record contains the information about the extension record. This
information is stored in an ATTRIBUTE_LIST attribute

Yes

40 – 41 Next attribute ID
The attribute ID that will be assigned to the next attribute added to the
MFT Record. This is incremented each time it is used. Every time the
MFT record is reused this ID is set to zero.

No

42 – 1023 Attributes and fixup values Yes

Table 2: Data structure for basic MFT entry

Every MFT entry contains a $STANDARD_INFORMATION, $FILE_NAME, and $DATA attribute. Each
attribute contains a header that occupies the first 16 bytes of the attribute. The data structure of the first 16
bytes of an attribute is shown in Table 3. Again, notes have been provided in the description field wherever
possible.

26

Byte Range Description Essential

0 – 3 Attribute type identifier Yes

4 – 7 Length of attribute Yes

8 - 8 Non-resident flag
When set to 1 the attribute is non-resident. The flag’s value
identifies if the attribute is compressed (0x0001), encrypted
(0x40000) or sparse (0x8000).

Yes

9 – 9 Length of name Yes

10 – 11 Offset to name
This is relative to the start of the attribute.

Yes

12 – 13 Flags Yes

14 – 15 Attribute identifier
This is the number that is unique to this attribute for this MFT entry.

Yes

Table 3: Data structure for the first 16 bytes of an attribute

We will now use the information provided above to interpret the MFT entry for doc2HV.doc shown in Figure
17 above. Table 4 shows the data extracted from the MFT entry for this file.

Byte Range Description

0 – 3 Signature (“FILE”)
Bytes 0 to 3 show the standard signature value for doc2HV is “FILE”.

4 – 5 Offset to fixup array
Bytes 4 and 5 show that the fixup array for doc2HV is located 48 bytes (0x0030) into the MFT
entry.

6 – 7 Number of entries in the fixup array
Bytes 6 and 7 show that the fixup array has 3 values.

8 – 15 $LogFile Sequence Number (LSN)
Bytes 8 to 15 show the metadata that has been recorded for doc2HV.

16 – 17 Sequence value
Bytes 16 and 17 show that the sequence value for the doc2HV MFT entry is 108, which means
that the entry has been used 108 times.

18 – 19 Link count
Bytes 18 and 19 show that the link count is 2, so we know that it has two names.

20 – 21 Offset to the first attribute
Bytes 20 and 21 show that the first attribute is located at byte offset 56 (0x0038).

22 – 23 In-use and directory flags
Bytes 22 and 23 show that this entry is in use (0x0001)

24 – 27 Used size of MFT entry

28 – 31 Allocated size of MFT entry

32 – 39 File reference to base record
The base entry values in bytes 32 to 39 are 0, which shows that this is a base entry.

40 – 41 Next attribute ID
Bytes 40 and 41 show that the next attribute ID to be assigned is 4. Therefore, we should expect
to see attributes with IDs 1 to 3.

42 – 1023 Attributes and fixup values
The fixup array starts at byte 48 (see offset to fixup array above). The first two bytes show the
signature value, which is 0x0007. The next two values are the original values that should be used
to replace the signature value.

Table 4: Data structure for basic MFT entry

27

The first attribute is the $STANDARD_INFORMATION attribute, which is always resident and contains the
basic metadata for the file or directory. This attribute starts at byte 56 and the attribute type is shown in the
first four bytes as 16 (0x10). Bytes 4 to 7 show that it has a size of 96 bytes (0x60). Byte 8 shows that this is
a resident attribute (0x00), and byte 9 shows that it does not have a name (0x00). The flags and id values
are set to 0 in bytes 12 to 13 and 14 to 15. Bytes 16 to 19 show that the attribute is 72 bytes (0x48) long,
and bytes 20 and 21 show that it starts 24 bytes (0x18) from the start of the attribute. The 24 bytes offset
and 72 bytes attribute length equal a total of 96 bytes, which is the reported length of the attribute.

The data extracted from the $STANDARD_INFORMATION attribute for doc2HV.doc is shown in Table 5:

Byte Range Description
0 – 7 Creation time

01 C9 12 FE A8 FD CE AE 1

8 – 15 File altered time
01 C9 12 FE B3 54 40 EA 2

16 – 23 MFT altered time
01 C9 12 FE B3 54 40 EA 3

24 – 31 File accessed time
01 C9 14 CC 16 E6 C0 78 4

32 – 35 Flags
The flag value is set to 0x00000020, which means that the file permissions is set to archived.

36 – 39 Maximum number of versions
0x00000000 means that file versions are not being used.

40 – 43 Version number
0x00000000 means that file versions are not being used.

44 – 47 Class ID
Class ID is set to 0.

48 – 51 Owner ID
Owner ID is set to 0.

52 – 55 Security ID
Security ID is set to 01 68.

56 – 63 Quota Charged
Quota charged is set to 0.

64 - 71 Update Sequence Number (USN)
The update sequence number is set to 00 00 00 00 C9 C8 A7 60 which means that change
journaling is enabled.

Table 5: $STANDARD_INFORMATION attribute data for doc2HV.doc

Unfortunately, the $STANDARD_INFORMATION attribute provides little information to help us identify the
hidden volume.

The second attribute, $FILE_NAME attribute, is used to store the file’s name and parent directory information
and it is used in a directory index. When it is used in an MFT entry, it does not contain any essential
information, but when it is used in a directory index it does. The $FILE_NAME attribute contains the fields
shown in Table 6. The data extracted from the $FILE_NAME attribute for doc2HV.doc is also shown in
Table 6.

Byte Range Description
0 – 7 File reference of parent directory

The parent directory is 5135 and the sequence number is 161, which is the entry for the root
directory.

8 – 15 File creation time
01 C9 12 FE A8 FD CE AE

16 – 23 File modification time
01 C9 12 FE B3 54 40 EA

1 - 4 Unfortunately, I was unable to convert the date to UTC time

28

24 – 31 MFT modification time
01 C9 12 FE B3 54 40 EA

32 – 39 File access time
01 C9 12 FE B3 54 40 EA

40 - 47 Allocated size of file
Allocated size of file is set to 0. Since this value is set to zero, it means that this attribute is not
used in a directory index. If it had been used in a directory index, the value for this attribute would
be accurate.

48 - 55 Real size of file
Real size of file is set to 0. Since this value is set to zero, it means that this attribute is not used
in a directory index. If it had been used in a directory index, the value for this attribute would be
accurate.

56 - 59 Flags
The flag value is set to 0x0020, which means that the file permissions is set to archived.

60 - 63 Reparse value
Reparse value is set to 0, this is because it is not essential.

64 – 64 Length of name
Length of name is 12 letters long

65 – 65 Namespace
Byte 65 shows it is in name space 2, which is DOS compliant.

66+ Name
The name is DOC2HV~1.LNKnk

Table 6: $FILE_NAME attribute data for doc2HV.doc

As the namespace is DOS compliant, Windows requires that two $FILE_NAME attributes exist, a
$FILE_NAME (SHORT) and a $FILE_NAME (LONG). $FILE_NAME (SHORT) has already been discussed
above but, due to the $FILE_NAME attribute for this entry not being used in a directory index and the
usefulness of this attribute being limited, I will not discuss the FILE_NAME (LONG) attribute any further other
than to say that the long file name for this entry is doc2HV.doc.lnk.

The $DATA attribute is the simplest to understand because it has no native structure. After the header,
there is only raw content that corresponds to the contents of the file. It has a type identifier of 128 and has
no minimum or maximum size. For most files, this is the last attribute in the MFT entry. The only useful
information that can be obtained from the $DATA attribute is a reference to the F drive, which is the drive
letter assigned to the hidden volume when it was mounted. It was observed that all six of the doc2HV.doc
files returned in the search, identified drive F as being the location of the document we know to be hidden.

Unfortunately, the MFT entries for doc2HV.doc have been unable to provide sufficient evidence of the hidden
volume, other than associating it with the F drive. We know that the F drive is our hidden volume but in
cases where there is zero knowledge of an offending file or document, having access to the drive letter
would be insufficient proof of a hidden volume. This is because the Drive F could plausibly be removable
storage, such as a flash drive, or a removable hard drive.

To confirm this belief, a search was performed on the $MFT folder to find entries associated with the /F:\ to
determine whether I could find evidence of the F Drive being associated with files other than those stored in
the hidden volume. Although many of the entries found referred to the doc2HV.doc document, there were
also MFT entries that referred to documents I know to have been saved to removable storage in the past, an
example of one of these documents is shown in Figure 19 below.

Figure 19: Example of document saved in MFT

29

5.3 Evidence of data leakage from the hidden volume

Ambient data can reside in non-traditional computer storage areas and formats such as file slack, the
Windows swap or page file and unallocated file space, therefore, the hard drive was investigated to
determine whether any data had leaked from the hidden volume or any of the documents contained within it,
thereby, compromising a user’s plausible deniability.

Another Word document was added to the hidden volume and a new volume snapshot was taken, see
Figure 20 below. To add the new document to the hidden volume, the volume was mounted and then
dismounted immediately to reduce the risk of data leakage. This caused changes to the drive addresses.
The new drive addresses for the outer volume and hidden volume are also shown in Figure 20 below.

Figure 20: Files contained in hidden volume

Since the purpose of a hidden volume is to conceal evidence of potentially damaging documents, files and
criminal activity, the new document, named doc2HVWBB.doc, was created to include content that would
spark the interest of a forensic investigator or authorities, see Figure 21.

Figure 21: Contents of Hidden file doc2HVWBB.doc

On analysis of Hard Disk 0, Partition 1, it was discovered that data had leaked into a number of places on
the hard drive, namely: c:\hiberfil.sys, $MFT, free space, ntuser.dat and System Volume Information folder.

C:\hiberfil.sys
Instead of shutting down and restarting the computer, Windows takes a snapshot of everything running on
the system, copies it to the hard drive and then turns off most the of hardware. Hibernation takes everything
in memory and writes it to the hard drive as the hiberfil.sys file. As can be seen in Figure 22, reference to
the doc2HV.doc document from VolA.vol has been saved in the hiberfil.sys file.

30

Figure 22: Hiberfil.sys

$MFT
As can be seen from Figure 23 below, an entry for the hidden document doc2HVWBB.doc has been saved
in the master file table. The MFT entry shows the document name, the drive letter and the author of the
document.

Figure 23: MFT entry for doc2HVWBB.doc

Free space
Free space, clusters marked by the file system as not in use, contain evidence of the hidden document,
doc2HVWBB.doc and hidden volume that was previously mounted as Drive G, see Figure 24 below.

Figure 24: Reference to hidden document and hidden volume contained in free space

ntuser.dat
Within the root of the profile, a file named ntuser.dat contains the user's personalised settings for the majority
of software installed on the computer, including Windows itself. When the user logs-on, ntuser.dat becomes
merged with the computer's registry. A link reference to the doc2HVWBB.doc document has been stored in
the ntuser.dat file, see Figure 25 below. The shortcut, or .lnk files, which are created automatically by

31

Windows, store a wealth of information about files, including the real file’s name, length, date of creation,
time of access and the volume serial number of the file system on which the real files are stored. The .lnk
file can be used to determine whether a hidden volume is present.

Figure 25: Reference to doc2HVWBB.doc.lnk in ntuser.dat

System Volume Information
The System Volume Information folder is a part of System Restore, the tool that allows users to set points in
time to roll back their computer. The System Volume Information folder is where XP stores these points and
associated information that makes them accessible.

The system stored a copy of the doc2hvwwb.doc inside the c:\documents and settings\user\recent folder and
created a link to this folder inside the System Volume Information folder, see Figure 26 below.

Figure 26: Reference to hidden document in System Volume Information folder

Figure 27 below shows evidence of the volumes that have been mounted on the system. We know that the
F drive is the mounted hidden drive and doc2HV.doc is the document contained inside it.

Figure 27: Evidence of the drives that have been mounted

32

The following scenario demonstrates how evidence of a hidden volume may be obtained from a suspect’s
laptop.

Scenario

A laptop is searched and seized at the airport. Using Windows Explorer, the investigator can see that the
laptop contains two volumes, Vol1.vol and VolA.vol, see Figure 28 below:

Figure 28: Folders and files visible in Windows Explorer

The investigator asks the laptop owner to mount both volumes in order to inspect them. Figure 29 shows the
drive letters automatically assigned to the volumes when they were mounted.

Figure 29: Drive letters assigned to mounted volumes

33

When the investigator inspects the H Drive using Windows Explorer, he can see that it contains one
document, doc1OV.doc, and an empty RECYCLER folder, see Figure 30 below.

Figure 30: Contents of the H Drive

The doc1OV.doc document is found to contain nothing of interest. Using a forensic tool, the investigator
performs a search for VolA.vol on the laptop’s hard drive. As can be seen from Figures 31 and 32 below,
VolA.vol contains documents that are not visible in Windows Explorer, namely doc2HV.doc and
doc2HWWBB.doc. From the search results returned, the investigator find suspicious content in document
doc2HV.doc, see Figure 32 below. This content raises his suspicious sufficiently enough to prompt him to do
more in-depth analysis of the file system.

Figure 31: Documents contained in VolA.vol not visible through Windows Explorer

34

Figure 32: Contents of documents contained in VolA.vol not visible in Windows Explorer

Further analysis would be to check the MFT entries for both documents to determine whether they are recent
documents, through their file creation, file modification, file access and MFT modification times. The flags
could also be checked to see if the documents are in use or deleted.

I believe the information obtained by the investigator during his analysis of the hard drive would be sufficient
to raise suspicion that there is a hidden volume contained inside VolA.vol. Under these circumstances the
user would be forced to disclose the passphrase or en/decryption keys for the hidden volume or face up to
five years imprisonment.

35

CHAPTER 6 CONCLUSIONS
In conclusion, disk surface analysis on a hard disk that contains a FreeOTFE hidden volume has shown that
no useful information can be obtained from the critical data block or master file table to establish the
presence of the hidden volume.

However, leakage of data from the hidden volume and its enclosed files and documents, into various areas
of the Windows operating system is sufficient to raise suspicion that a hidden volume is present. Therefore,
the claim made by FreeOTFE that, when their product is used, there is no way for an adversary to identify
the existance of hidden volumes or data contained within them, thereby maintaining plausible deniability
should a user be requested or forced to reveal their encryption keys, has been disproved.

Some vendors claim that improper use of their products may result in loss of plausible deniability but
FreeOTFE was installed and used in accordance with the instructions provided in the FreeOTFE user
manual and evidence could still be obtained of the potential presence of a hidden volume.

In the United States of America, the aim of plausible deniability is to raise reasonable doubt as to “what”
volume files really are and leaving it up the prosecution to prove, beyond a reasonable doubt, that they store
encrypted data. However, in the UK, things are slightly different with the introduction of the Regulation of
Investigatory Powers Act (RIPA), where a user is required to prove that data found is not a FreeOTFE
volume or any other form of encrypted data, which may be very difficult or impossible for a user to do when
they use FreeOTFE.

36

REFERENCES

[1] Regulation of Investigatory Powers Act 2000, 2000 CHAPTER 23 [www document]
http://www.opsi.gov.uk/acts/acts2000/ukpga_20000023_en_1 (accessed: 27 July 2008)

[2] Canetti, R; Dwork, C; Naor, M & and Ostrovsky, R (1996), Deniable Encryption, Lecture Notes in
Computer Science, Volume 1294, pp 90–104

[3] BestCrypt for Windows [www document] http://www.jetico.com/bcrypt8.htm (accessed: 24 July 2008)

[4] FreeOTFE [www document] http://www.freeotfe.org/docs/description.htm (accessed: 26 July 2008)

[5] TrueCrypt [www document] http://www.truecrypt.org/ (accessed: 22 July 2008)

[6] PhoneBookFS online manual [www document] http://www.freenet.org.nz/phonebook/manual.html
(accessed: 22 July 2008)

[7] Rubberhose [www document] http://iq.org/~proff/rubberhose.org/ (accessed: 19 July 2008)

[8] Corsair (2007) USB Flash Wear-Leveling and Life Span [www document]
http://www.corsairmemory.com/_faq/FAQ_flash_drive_wear_leveling.pdf (accessed: 1 August 2008)

[9] Karstens, N L (2006) Deniable Encryption [www document]
http://www.karstens.us/DeniableEncryption.pdf (accessed: 18 July 2008), pp 1 - 10

[10] Czeski, A; St Hilaire, D J; Koscher, K; Gribble, S D; Kohno, T & Schneier, B (2008) Defeating
Encrypted and Deniable File Systems: TrueCrypt v.5.1a and the Case of the Tattling OS and
Applications [www document] http://en.wikipedia.org/wiki/Steganographic_file_system (accessed: 8
September 2008)

[11] WinHex: Computer Forensics & Data Recovery Software, Hex Editor & Disk Editor [www document]
http://www.x-ways.net/winhex/ (accessed: 2 October 2008)

[12] Oler, B & El Fray, I (2007) Deniable File System--Application of Deniable Storage to Protection of
Private Keys, Computer Information Systems and Industrial Management Applications, 2007, CISIM
'07, 6th International Conference on 28 - 30 June 2007, pp 225 - 229

[13] Anderson, R; Needham, R; & Shamir A (1998) The Steganographic File System, In Information Hiding,
2nd International Workshop, Portland, Oregon, USA, Spring 1998

[14] RSA Laboratories: PKCS #5 v2.0: Password-Based Cryptography Standard, 25 March 1999

[15] Zhou, X; Pang, H & Tan, K (2004) Hiding Data Access in Steganographic File System in Data Engineering,
2004 Proceedings, 20th International Conference on 30 March - 2 April 2004, pp 572 – 583

[16] McDonald, A & Kuhn, M (1999) StegFS: A Steganographic File System for Linux, university of
Cambridge [www document] http://www.cl.cam.ac.uk/~mgk25/ih99-stegfs.pdf (accessed: 13
September 2008)

[17] Pang, H; Tan, K & Zhou, X (2003) StegFS: a steganographic file system, Data Engineering, 2003.
Proceedings, 19th International Conference on 5 - 8 March 2003, pp 657 – 667

